ISSN: 2455 - 5428

International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, July - 2017

MORE ON THE DIOPHANTINE EQUATION $2^x + 87^y = z^2$

G. Jeyakrishnan* & Dr. G. Komahan**

* Research Scholar, Department of Mathematics, Kings College of Engineering, Punalkulam, Tamilnadu ** Research Advisor & Head, Department of Mathematics, A.V.V.M Sri Pushpam College, Poondi, Thanjavur, Tamilnadu

Cite This Article: G. Jeyakrishnan & Dr. G. Komahan, "More on the Diophantine Equation $2^x + 87^y = z^2$ ", International Journal of Current Research and Modern Education, Special Issue, July, Page Number 8-9,

2017.

Abstract:

In this paper, we show that (3, 0, 3) is a unique non-negative integer solution for the Diophantine solution $2^x + 87^y = z^2$, where x,y and z are non-negative integers.

1. Introduction:

In 2007, Acu [1] proved that (3, 0, 3) and (2, 1, 3) are only two solutions in non-negative integers of the Diophantine equation $2^x + 5^y = z^2$. In 2013, Sroysang [2] proved that more on the Diophantine equation $2^x + 32^y = z^2$ has non-negative integer (3, 0, 3) is a unique non-negative integer solution. In this paper we show that (3, 0, 3) is a unique non-negative integer solution for the Diophantine equation $2^x + 87^y = z^2$ where x, y and z are non-negative integers.

2. Preliminaries:

In 1844, Catalan [3] conjectures that the Diophantine equation a^x - b^y =1 has a unique integer solution with min{a, b, x, y}>1. The solution (a, b, x, y) is (3, 2, 2, 3). This conjecture was proven by Mihailescu [4] in 2004

Preposition 2.1:

([5]). (3, 2, 2, 3) is a unique solution (a, b, x, y) of the Diophantine equation a^x - b^y =1, where a, b, x and y are integers with min{a, b, x, y}>1

Lemma 2.2:

[1] (3, 3) is a unique solution of (x, z) for the Diophantine equation $2^x + 1 = z^2$, Where x and z are non-negative integers.

Lemma 2.3:

The Diophantine equation $1+87^y=z^2$ has no non-negative integer solution where y and z are non-negative integers.

Proof:

Suppose that there are non-negative integers y and z such that $1+87^y=z^2$. If y=0, then $z^2=2$ which is impossible. Then y\ge 1. Thus, $z^2=87^y+1\geq87^1+1=88$, then z>9. Now we consider on the equation $z^2-87^y=1$. By preposition 2.1, we have y=1. Then $z^2=88$. This is a contradiction. Hence, the equation $1+87^y=z^2$ has no non negative integer solution.

3. Results:

Theorem 3.1:

(3, 0, 3) is a unique solution (x, y, z) for the Diophantine equation $2^x + 87^y = z^2$ where x, y and z non-negative integers.

Proof:

Let x, y and z be non-negative integers such that $2^x + 87^y = z^2$. By lemma 2.3, we have $x \ge 1$. Thus z is odd then there is a non-negative integer t such that z = 2t + 1. We obtain that $2^x + 87^y = 4(t^2 + t) + 1$. Then $87^y = 1 \pmod{4}$. Thus y is even. Then there is a non-negative integer k such that y = 2k. We divide the number y into two cases.

Case y=0. By lemma 2.2, we have x=3 and z=3.

Case $y \ge 2$. Then $k \ge 1$. Then $z^2 - 87^{2k} = 2^x$. Then $(z - 87^k)(z + 87^k) = 2^x$. We obtain that $z - 87^k = 2^\alpha$, where α is a non-negative integer. Then $z + 87^k = 2^{x-\alpha}$. it follows that $2(87^k) = 2^{x-\alpha} - 2^\alpha = 2^\alpha (2^{x-2\alpha} - 1)$. We divide the number α into two sub cases.

Sub case α =0. Then z-87^k=1. Then z is even. This is a contradiction.

Sub case $\alpha=1$. Then $2^{x-2}-1=87^k$. It follows that $2^{x-2}=87^k+1\geq 87+1=88$. Thus $x\geq 8$. More over $2^{x-2}-87^k=1$. By preposition 2.1, we have k=1, then $2^{x-2}=88$. This is impossible.

Therefore, (3, 0, 3) is a unique solution (x, y, z) for the equation $2^x + 87^y = z^2$

Corollary 3.2:

The Diophantine equation $2^x+87^y=w^4$ has no non-negative integer solution. Where x, y and w are non-negative integers.

Proof:

Suppose that there are non-negative integers x, y and w such that $2^x+87^y=w^4$. Let $z=w^2$. Then $2^x+87^y=z^2$. By lemma 3.1, we have (x, y, z) = (3, 0, 3). Then $w^2=z=3$. This is a contradiction.

Corollary 3.3:

(1, 0, 3) is a unique solution of (x, y, z) for the Diophantine equation $8^{\alpha}+87^{y}=z^{2}$, where y, α and z are non-negative integers.

Proof:

Let x, y and z are non-negative integers such that $8^{\alpha}+87^{y}=z^{2}$. Let $x=3\alpha$. Then $2^{x}+87^{y}=z^{2}$. By theorem 3.1 we have (x, y, z)=(3, 0, 3). Then $x=3\alpha=3$. Thus $\alpha=1$. Therefore, (1, 0, 3) is a unique solution (x, α, z) for the equation $8^{\alpha}+87^{y}=z^{2}$.

Corollary 3.4:

The Diophantine equation $32^{\alpha}+87^{y}=z^{2}$ has no non-negative integer solution. Where α , y and z are non-negative integers.

Proof:

Suppose that there are non-negative integers α , y and z such that $32^{\alpha}+87^{y}=z^{2}$. Let $x=5\alpha$. Then $2^{x}+87^{y}=z^{2}$. By theorem 3.1, we have $x=5\alpha=3$. This is contradiction.

ISSN: 2455 - 5428

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

References:

- 1. D. Acu, On a Diophantine equation $2^x + 5^y = z^2$, Gen. Math. 15(2007), 145-148.
- 2. B. Sroysang, More On the Diophantine equation $2^x + 37^y = z^2$, International Journal of pure and applied Mathematics 89(2013), 275-278.
- 3. E. Catalan, Note extradite d'une letter addressee an I editeur, J. Reine Angew. Math.27 (1844), 192.
- 4. S. Chotchaisthit, On the Diophantine equation $4^x + p^y = z^2$, where p is a prime number, Amer. J. Math. Sci. 1(2012), 191-193.
- 5. P. Mihailescu, Primary cyclotomic units and a proof of catalan's conjecture, J. Reine Angew. Math 572(2004), 167-195
- 6. A. Suvarnamani, Solutions of the Diophantine equation $2^x + p^y = z^2$, Int. J. Math. Sci. Appl. 1 (2011). 1415-1419
- 7. A. Suvarnamani, a. singta and S. Chotchaisthit, on two Diophantine equation $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Sci. Technol. RMUTTJ. 1(2011), 25-28.
- 8. G. Jeyakrishnan & G. Komahan, on the Diophantine equation $128^x + 196^y = z^2$, Acta Ciencia Indica Mathematics, 2(2016), 195-196
- 9. G. Jeyakrishnan & G. Komahan, on the Diophantine equation $3136^x + 2048^y = z^2$, Acta Ciencia Indica Mathematics, 3(2016), 225-226
- 10. G. Jeyakrishnan & G. Komahan, on the Diophantine equation $27^x + 2^y = z^2$, IJSRD-International journal for scientific research and Development, Vol 3, Issue 11, (2017) 166-167
- 11. G. Jeyakrishnan & G. Komahan, on the Diophantine equation $128^x + 961^y = z^2$, IJIRST-International journal for innovative research in science and technology, vol 3, Issue 09 (February 2017)119-120
- 12. P. Jayakumar & G. Shankarakalidoss, on two Diophantine equation $16^x + 23^y = z^2$ and $16^x + 29^y = z^2$, Archimedes J. Math. 4(2014), 99-102.