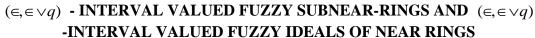
International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, July - 2017



V. Vetrivel* & P. Murugadas**

- $*\ Department\ of\ Mathematics,\ Annamalai\ University,\ Annamalainagar,\ Tamilnadu$
- ** Department of Mathematics, Govt. Arts and Science College, Karur, Tamilnadu

Cite This Article: V. Vetrivel & P. Murugadas, " $(\in, \in \lor q)$ - Interval Valued Fuzzy Subnear-Rings and

 $(\in, \in \lor q)$ -Interval Valued Fuzzy Ideals of Near Rings", International Journal of Current Research and Modern Education, Special Issue, July, Page Number 127-135, 2017.

Abstract:

In this paper, the notions of $(\in, \in \lor q)$ - interval valued fuzzy subnear-rings, $(\in, \in \lor q)$ - interval valued fuzzy ideal and $(\in, \in \lor q)$ - interval valued fuzzy quasi-ideal of near-rings are studied. The characterization of such $(\in, \in \lor q)$ - interval valued fuzzy ideals are also obtained.

Key Words: Interval-Valued Fuzzy Subnear Ring, Fuzzy Ideal & Quasi-Ideal

1. Introduction:

The theory of fuzzy set which was introduced by Zadeh[20] is applied to many Mathematical brances. The notion of fuzzy subgroup was introduced by Rosenfeld[17] in 1971. Fuzzy ideals and rings were introduced by W.Liu[13] and it has been studied by several authors[9,11,12]. The notions of fuzzy subnear-rings, fuzzy ideals of near-rings were introduced by Salah Abou-Zaid[18], A.L. Narayanan introduced the notion of fuzzy quasi-ideal of near-rings. A new type of fuzzy subgroup (viz, $(\in, \in \vee q)$ - fuzzy subgroup) was introduced in an earlier paper of Bhakat and Das[1] by using the combined notions of "belonginess" and "quasicoincidence" of fuzzy points and fuzzy sets. The concept has been studied further in[1,2,3,4,5]. As a generalization of fuzzy set Zadeh[20] in 1975 introduced a new notion of fuzzy subsets viz., interval valued (i-v) fuzzy subset, where the values of the membership function are closed intervals of numbers instead of a number. Thillaigovindan et.al.,[19] introduced the notion of i-v fuzzy subnear-ring and i-v fuzzy left (right) ideal of near-rings and investigated some of their properties. Further Chinnadurai and Kadalarasi[6] studied interval valued fuzzy quasi-ideal of near-rings. In this paper, we extend the i-v fuzzy set notion to $(\in, \in \vee q)$

- fuzzy subnear-rings and $(\in, \in \lor q)$ - fuzzy ideals of near-rings.

2. Preliminaries:

We first recall some basic concepts for the sake of completeness. By a near-ring [10] we mean a non-empty set N with two binary operations $\dot{}$ and $\dot{}$ satisfying the following axioms:

- (i) (N,+) is a group,
- (ii) (N,.) is a semigroup,

(iii)
$$(x + y).z = x.z + y.z \ \forall \ x, y, z \in N$$
.

Precisely speaking, it is a right near-ring because it satisfies the right distributive law. We will use the word "near-ring" to mean "right near-ring". We denote xy instead of x.y. Note that 0x=0 but in general $x0\neq 0$ for some $x\in N$. If P and Q are two non-empty subsets of N we define $PQ=\{ab\,|\,a\in P,b\in Q\}$ and $P*Q=\{a(b+i)-ab\,|\,a,b\in P,i\in Q\}$.

A subgroup M of a near-ring N is called a subnear-ring of N if $MM \subset M$.

A near-ring N is called zero-symmetric if $x0 = 0 \ \forall x \in N$. A subset I of a near-ring N is called an ideal of N if (i) (I,+) is a normal subgroup of (N,+),

- (ii) $IN \subset I$,
- (iii) $a(b+i)-ab \in I \ \forall \ a,b \in N$ and $i \in I$, that is, $N*I \subseteq I$.

A normal subgroup R of (N,+) with (ii) is called a right ideal of N while a normal subgroup L of (N,+) with (iii) is called a left ideal of N. A subgroup Q of (N,+) is called a quasi-ideal of near-ring N if $QN \cap NQ \cap N^*Q \subseteq Q$. We now review some fuzzy logic concepts.

Definition 2.1 [19] 1An interval number \overline{a} on [0,1] is a closed subinterval of [0,1], that is, $\overline{a} = [a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$ where a^- and a^+ are the lower and upper end limits of \overline{a} respectively. The set of all closed subintervals of [0,1] is denoted by D[0,1]. We also identify the interval [a,a] by the number $a \in [0,1]$. For any interval numbers $\overline{a}_i = [a_i^-, a_i^+], \overline{b}_i = [b_i^-, b_i^+] \in D[0,1], i \in I$, we define

$$max^{i}\{\overline{a}_{i}, \overline{b}_{i}\} = [max^{i}\{a_{i}^{-}, b_{i}^{-}\}, max^{i}\{a_{i}^{+}, b_{i}^{+}\}],$$

$$min^{i}\{\bar{a}_{i},\bar{b}_{i}\}=[min^{i}\{a_{i}^{-},b_{i}^{-}\},min^{i}\{a_{i}^{+},b_{i}^{+}\}],$$

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

$$inf^{i}\overline{a}_{i} = [\bigcap_{i \in I} a_{i}^{-}, \bigcap_{i \in I} a_{i}^{+}], sup^{i}\overline{a}_{i}^{-} = [\bigcup_{i \in I} a_{i}^{-}, \bigcup_{i \in I} a_{i}^{+}]$$

 $\inf_{i \in I} \bar{a}_i = [\bigcap_{i \in I} a_i^-, \bigcap_{i \in I} a_i^+], sup^i \bar{a}_i = [\bigcup_{i \in I} a_i^-, \bigcup_{i \in I} a_i^+]$ In this notation $\bar{0} = [0,0]$ and $\bar{1} = [1,1]$. For any interval numbers $\bar{a} = [a^-, a^+]$ and $\bar{b} = [b^-, b^+]$ on [0,1], define

- $(1) \overline{a} \le \overline{b}$ if and only if $a^- \le b^-$ and $a^+ \le b^+$.
- (2) $\overline{a} = \overline{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$.
- (3) $\overline{a} < \overline{b}$ if and only if $\overline{a} \le \overline{b}$ and $\overline{a} \ne \overline{b}$
- $(4) k \overline{a} = [ka^-, ka^+], \text{ whenever } 0 \le k \le 1.$

Definition 2.2 [19]2 Let X be any set. A mapping $\overline{A}: X \to D[0,1]$ is called an interval-valued fuzzy subset (briefly, i-v fuzzy subset) of X where D[0,1] denotes the family of all closed subintervals of [0,1] and $\overline{A}(x) = [A^{-}(x), A^{+}(x)]$ for all $x \in X$, where A^- and A^+ are fuzzy subsets of X such that $A^-(x) \le A^+(x)$ for all $x \in X$. Note that A(x) is an interval (a closed subset of [0,1]) and not a number from the interval [0,1] as in the case of fuzzy subset.

Definition 2.3. [19] 3A mapping $min^{i}: D[0,1] \times D[0,1] \to D[0,1]$ defined by

 $min^{i}(\bar{a},\bar{b}) = [min\{a^{-},b^{-}\}, min\{a^{+},b^{+}\}]$ for all $\bar{a},\bar{b} \in D[0,1]$ is called an interval min-norm.

Definition 42.4. [19] A mapping $max^{i}: D[0,1] \times D[0,1] \to D[0,1]$ defined by

 $max^{i}(\bar{a},\bar{b}) = [max\{a^{-},b^{-}\}, max\{a^{+},b^{+}\}]$ for all $\bar{a},\bar{b} \in D[0,1]$ is called an interval max-norm.

Let min^i and max^i be the interval min-norm and max-norm on D[0,1] respectively. Then the following are true.

- 1. $min^{i}\{a, a\} = a$ and $max^{i}\{a, a\} = a$ for all $a \in D[0, 1]$.
- 2. $min^i\{\overline{a},\overline{b}\} = min^i\{\overline{b},\overline{a}\}$ and $max^i\{\overline{a},\overline{b}\} = max^i\{\overline{b},\overline{a}\}$ for all $\overline{a},\overline{b} \in D[0,1]$.
- 3. If $\overline{a} \ge \overline{b} \in D[0,1]$, then $min^i\{\overline{a},\overline{c}\} \ge min^i\{\overline{b},\overline{c}\}$ and $max^i\{\overline{a},\overline{c}\} \ge max^i\{\overline{b},\overline{c}\}$ for all $\overline{c} \in D[0,1]$. Let \overline{A} and \overline{B} be two i-v fuzzy subsets of semigroup X. We define the relation \subseteq between \overline{A} and \overline{B} , the intersection and product of \overline{A} and B, respectively as follows:
- (i) $\overline{A} \subset \overline{B}$ if $\overline{A}(x) \leq \overline{B}(x) \ \forall x \in X$,
- (ii) $(\overline{A} \cap \overline{B})(x) = min^i \{\overline{A}(x), \overline{B}(x)\} \forall x \in X$,

(iii)
$$(\overline{A} \circ \overline{B})(x) = \begin{cases} sup_{x=yz}^{i} [min^{i} {\overline{A}(y), \overline{B}(z)}] & \text{if } x = yz, \text{ for } y, z \in X, \\ \overline{0} & \text{Otherwise} \end{cases}$$

It is easily verified that the "product" of i-v fuzzy subsets is associative. Throughout this paper, N will denote a near-ring unless otherwise specified.

Definition 52.5. [19] For an i-v fuzzy subset \overline{A} of a set X and $\overline{t} \in D[0,1]$, the subset $\overline{A_t} = \{x \in X / \overline{A}(x) \ge \overline{t}\}$ is called a level subset of X determined by \overline{A} and \overline{t} .

Definition 6 2.6. [19] An i-v fuzzy subset \overline{A} of a set X of the form

$$\overline{A}(y) = \begin{cases} \overline{t} (\neq \overline{0}) & \text{if } y = x, \\ \overline{0} & \text{if } y \neq x \end{cases}$$

is said to be an i-v fuzzy point with support x and value t and is denoted by x_1 .

Definition 7 2.7. [19] An i-v fuzzy subset A of a group G is said to be an i-v fuzzy subgroup of G if $\forall x, y \in G$, (i) $\overline{A}(xy) \ge \min^i {\overline{A}(x), \overline{A}(y)}, \text{ (ii) } \overline{A}(x^{-1}) \ge \overline{A}(x).$

Definition 8 2.8. [19] An i-v fuzzy subset \overline{A} of N is called an i-v fuzzy subnear-ring of N if $\forall x, y \in N$, (i) $\overline{A}(x-y) \ge \min^i {\overline{A}(x), \overline{A}(y)}, \text{ (ii) } \overline{A}(xy) \ge \min^i {A(x), A(y)}.$

Definition 9 2.9. [19] An i-v fuzzy subset A of N is said to be an i-v fuzzy ideal of N if

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

(i) \overline{A} is an i-v fuzzy subnear-ring of N. (ii) $\overline{A}(y+x-y) \ge \overline{A}(x) \ \forall \ x, y \in N$,

(iii)
$$\overline{A}(xy) \ge \overline{A}(x) \ \forall \ x, y \in \mathbb{N}$$
, (iv) $\overline{A}(a(b+i)-ab) \ge \overline{A}(i) \ \forall \ a,b,i \in \mathbb{N}$.

An i-v fuzzy subset with (i), (ii) and (iii) is called an i-v fuzzy right ideal of N whereas an i-v fuzzy subset with (i), (ii) and (iv) is called an i-v fuzzy left ideal of N.

Definition 10 2.10. [19] Let \overline{A} be an i-v fuzzy subset of N. We define

$$(N*\overline{A})(x) = \begin{cases} sup_{x=a(b+i)-ab}^{i} \overline{A}(i) & \text{if } x = a(b+i)-ab, a, b, i \in \mathbb{N}, \\ \overline{0} & \text{Otherwise} \end{cases}$$

Definition 11 2.11. [19] An i-v fuzzy subgroup \overline{A} of N is called an i-v fuzzy quasi-ideal of N if $(\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N * \overline{A}) \subseteq \overline{A}$.

Example 2.12.12 Let $N = \{0, a, b, c\}$ be the near-ring with (N, +) as the Klein's four group and (N, -) as defined below

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
С	с	b	a	0

	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	0	b
с	a	a	a	c

Let $Q = \{0, c\}$. Then $QN = \{0, a, c\}$, $NQ = \{0, a, b, c\}$ and $N * Q = \{0, b\}$.

Therefore $QN \cap NQ \cap N$ å $Q = \{0\} \subseteq Q$. Hence Q is a quasi-ideal of N.

Define an i-v fuzzy subset $\overline{A}: N \to D[0,1]$ by $\overline{A}(0) = \overline{A}(c) = \overline{1}$ and $\overline{A}(a) = \overline{A}(b) = \overline{0}$. Clearly, \overline{A} is an i-v fuzzy quasi-ideal of N.

3. An $(\in, \in \lor q)$ - i-v Fuzzy Subnear-Rings and $(\in, \in \lor q)$ - i-v Fuzzy Ideals:

In this section, we introduce the notions of an $(\in, \in \lor q)$ i-v fuzzy subnear-ring and an $(\in, \in \lor q)$ i-v fuzzy ideal of a near-ring.

Definition 3.1. 13An i-v fuzzy point $x_{\bar{t}}$ is said to belong to (resp. be fuzzy quasi-coincident with) an i-v fuzzy subset \overline{A} , written as $x_{\bar{t}} \in \overline{A}$ (resp. $x_{\bar{t}} \neq \overline{A}$) if $\overline{A}(x) \geq \overline{t}$ (resp. $\overline{A}(x) + \overline{t} > \overline{1}$). $x_{\bar{t}} \in \overline{A}$ or $x_{\bar{t}} \neq \overline{A}$ " will be denoted by $x_{\bar{t}} \in \sqrt{q} \overline{A}$. $x_{\bar{t}} \in \overline{A}$, $x_{\bar{t}} \in \overline{A}$ and $x_{\bar{t}} \in \sqrt{q} \overline{A}$ do not hold.

Definition 3.2. 14An i-v fuzzy subset \overline{A} of a group G is said to be an $(\in, \in \lor q)$ - i-v fuzzy subgroup of G if $\forall x, y \in G$ and $\overline{t}, \overline{r} \in D(0,1]$, (i) $x_{\overline{t}}, y_{\overline{r}} \in \overline{A} \Longrightarrow (xy)_{\min(\overline{t},\overline{r})} \in \lor q \overline{A}$, (ii) $x_{\overline{t}} \in \overline{A} \Longrightarrow x_{\overline{t}}^{-1} \in \lor q \overline{A}$.

Remark 3.3. 15(I) The conditions (i) and (ii) of Definition 3.2 are respectively equivalent to

- (i) $\overline{A}(xy) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\} \ \forall \ x, y \in G \ \text{and} \ \text{(ii)} \ \overline{A}(x^{-1}) \ge min^i \{\overline{A}(x), \overline{0.5}\} \ \forall \ x \in G.$
- (ii) For any $(\in, \in \lor q)$ i-v fuzzy subgroup \overline{A} of G such that $\overline{A}(x) \ge \overline{0.5}$ for some $x \in G, \overline{A}(e) \ge \overline{0.5}$.
- (iii) Note that if \overline{A} is an i-v fuzzy subgroup of a group G, then \overline{A} is an $(\in, \in \lor q)$ i-v fuzzy subgroup of G. However, the converse is not necessarily true.

Remark 3.4.16 An i-v fuzzy subset \overline{A} of a group G is an $(\in, \in \vee q)$ - i-v fuzzy subgroup of G if and only if the level subset $\overline{A_t} = \{x \in G / \overline{A}(x) \ge \overline{t}\}$ is a subgroup of G $\forall \overline{t} \in D(0,0.5]$. But the level subset $\overline{A_t}, \overline{t} \in D(0.5,1]$ may not be a subgroup of G. Here we define the notion of an $(\in, \in \vee q)$ - i-v fuzzy subnear-ring of N.

Definition 3.5. 17An i-v fuzzy subset \overline{A} is said to be an $(\in, \in \vee q)$ - i-v fuzzy subnear-ring of N if $\forall x, y \in N$ and $\overline{t}, \overline{r} \in D(0,1]$, (i) $x_{\overline{t}}, y_{\overline{r}} \in \overline{A} \Rightarrow (x+y)_{\min(\overline{t},\overline{r})} \in \vee q \overline{A}$, (ii) $x_{\overline{t}} \in \overline{A} \Rightarrow (-x)_{\overline{t}} \in \vee q \overline{A}$.

(iii)
$$x_{\tilde{t}}, y_{\tilde{r}} \in \overline{A} \Rightarrow (xy)_{\min(\tilde{t}, \tilde{r})} \in \forall q \overline{A},$$

Lemma 3.6. 18Let \overline{A} be an i-v fuzzy subset of N and $\overline{t}, r \in D(0,1]$. Then

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

- (i) (ia) $x_{\bar{i}}, y_{\bar{r}} \in \overline{A} \Longrightarrow (x+y)_{\min(\bar{i},\bar{r})} \in \vee q \; \overline{A}$ if and only if
 - (1a) $\overline{A}(x+y) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\}, \forall x, y \in \mathbb{N}.$
- (ii) (ib) $x_{\bar{t}} \in \overline{A} \Longrightarrow (-x)_{\bar{t}} \in \vee q \overline{A}$ if and only if
 - (1b) $\overline{A}(-x) \ge \min^i {\overline{A}(x), \overline{0.5}}, \forall x \in \mathbb{N}.$
- (iii) (ic) $x_{\bar{t}}, y_{\bar{r}} \in \overline{A} \Longrightarrow (xy)_{\min(\bar{t}, \bar{r})} \in \vee q \overline{A}$ if and only if
 - (1c) $\overline{A}(xy) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\}, \forall x, y \in \mathbb{N}.$

Proof. $(ia \Rightarrow 1a)$: Suppose that $x, y \in N$. We consider the following two cases:

(a) $\overline{A}(x) \wedge \overline{A}(y) < \overline{0.5}$, (b) $\overline{A}(x) \wedge \overline{A}(y) \ge \overline{0.5}$.

Case a: Assume that $\overline{A}(x+y) < \overline{A}(x) \wedge \overline{A}(y) \wedge \overline{0.5}$, which implies $\overline{A}(x+y) < \overline{t} < \overline{A}(x) \wedge \overline{A}(y)$. Then $x_{\overline{t}}, y_{\overline{t}} \in \overline{A}$, but $(x+y)_{\overline{t}} \in \overline{\sqrt{q}} \overline{A}$ which contradicts (ia).

Case b: Assume that $\overline{A}(x+y) < \overline{0.5}$, then $x_{\overline{0.5}}, y_{\overline{0.5}} \in \overline{A}$, but $(x+y)_{\overline{0.5}} \in \sqrt{q} \overline{A}$, a contradiction. Hence (1a) holds.

 $(ib \Rightarrow 1b)$: Suppose that $x \in N$. We consider the following cases: (a) $\overline{A}(x) < \overline{0.5}$, (b) $\overline{A}(x) \ge \overline{0.5}$.

Case a: Assume that $\overline{A}(x) = \overline{t} < \overline{0.5}$ and $\overline{A}(-x) = \overline{r} < \overline{A}(x)$. Choose \overline{s} such that $\overline{r} < \overline{s} < \overline{t}$ and $\overline{r} + \overline{s} < \overline{1}$. Then $x_{\overline{s}} \in \overline{A}$, but $(-x)_{\overline{s}} \in \overline{\vee q} \, \overline{A}$ which contradicts (ib). So $\overline{A}(-x) \ge \overline{A}(x) = \overline{A}(x) \wedge \overline{0.5}$.

Case b: Let $\overline{A} \ge \overline{0.5}$. If $\overline{A}(-x) < \overline{A} \wedge \overline{0.5}$, then $x_{\overline{0.5}} \in \overline{A}$, but $(-x)_{\overline{0.5}} \in \overline{\lor q} \overline{A}$, which contradicts (ib). So $\overline{A}(-x) \ge \overline{A}(x) \wedge \overline{0.5}$. (ic) \Rightarrow (1c): The proof is similar to (ia \Rightarrow 1a.)

Theorem 3.7. 19 An i-v fuzzy subset \overline{A} of N is an $(\in, \in \lor q)$ - i-v fuzzy subnear-ring of N if and only if (i) $\overline{A}(x-y) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\}, \forall x, y \in N$. (ii) $\overline{A}(xy) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\}, \forall x, y \in N$.

Proof. (i) Suppose that $x, y \in N$. We consider the following cases:

(a) $\overline{A}(x) \wedge \overline{A}(y) < \overline{0.5}$, (b) $\overline{A}(x) \wedge \overline{A}(y) \ge \overline{0.5}$.

Case a: Assume that $\overline{A}(x-y) < \overline{A}(x) \land \overline{A}(y) \land \overline{0.5}$, which implies $\overline{A}(x-y) < \overline{t} < \overline{A}(x) \land \overline{A}(y)$. Then $x_{\overline{t}}, y_{\overline{t}} \in \overline{A}$, but $(x-y)_{\overline{r}} \in \overline{\lor q} \, \overline{A}$ which contradicts $x_{\overline{t}}, y_{\overline{r}} \in \overline{A} \Longrightarrow (x+y)_{\min(\overline{t},\overline{r})} \in \overline{\lor q} \, \overline{A}$.

Case b: Assume that $\overline{A}(x-y) < \overline{0.5}$. then $x_{\overline{0.5}}, y_{\overline{0.5}} \in \overline{A}$, but $(x-y)_{\overline{0.5}} \in \sqrt{q} \overline{A}$, a contradiction. Hence $\overline{A}(x-y) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\}$ holds.

- (ii) Suppose that $x, y \in N$. We consider the following cases:
- (a) $\overline{A}(y) < \overline{0.5}$, (b) $\overline{A}(y) \ge \overline{0.5}$.

Case a: Assume that $\overline{A}(y) = \overline{t} < \overline{0.5}$ and $\overline{A}(xy) = \overline{r} < \overline{A}(x)$. Choose \overline{s} such that $\overline{r} < \overline{s} < \overline{t}$ and $\overline{r} + \overline{s} < \overline{1}$. Then $y_{\overline{s}} \in \overline{A}$, but $(xy)_{\overline{s}} \in \overline{\sqrt{q}} \, \overline{A}$ which contradicts $y_{\overline{r}} \in \overline{A}$ and $x \in N$ implies $(xy)_{\overline{r}} \in \sqrt{q} \, \overline{A}$. So $\overline{A}(xy) \ge \overline{A}(y) = \overline{A}(y) \land \overline{0.5}$.

Case b: Let $\overline{A}(y) \ge \overline{0.5}$. If $\overline{A}(xy) < \overline{A} \wedge \overline{0.5}$, then $y_{\overline{0.5}} \in \overline{A}$, but $(xy)_{\overline{0.5}} \in \sqrt{q} \overline{A}$, which contradicts $y_{\overline{r}} \in \overline{A}$ and $x \in N$ implies $(xy)_{\overline{r}} \in \sqrt{q} \overline{A}$. So $\overline{A}(xy) \ge \overline{A}(y) = \overline{A}(y) \wedge \overline{0.5}$.

Remark 3.8. 20Every i-v fuzzy subnear-ring of N (according to Definition 2.8) is an $(\in, \in \lor q)$ - i-v fuzzy subnear-ring of N. But the converse is not necessarily true as shown by the following example.

Example 3.9. 21Consider the near-ring (N,+,.) as defined in Example 2.12. Define an i-v fuzzy subset $\overline{A}: N \to [0,1]$ by $\overline{A}(0) = \overline{0.7}, \overline{A}(a) = \overline{0.4}, \overline{A}(b) = \overline{0.8}, \overline{A}(c) = \overline{0.4}$. Then \overline{A} is an $(\in, \in \lor q)$ i-v fuzzy subnear-ring of N. But since $\overline{A}(0) = \overline{A}(b-b) \not\geq min^i \{\overline{A}(b), \overline{A}(b)\}, \overline{A}$ is not an i-v fuzzy subnear-ring of N.

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

Definition 3.10. 22An i-v fuzzy subset \overline{A} of N is said to be an $(\in, \in \vee q)$ - i-v fuzzy ideal of N if

(i) \overline{A} is an $(\in, \in \vee q)$ - i-v fuzzy subnear-ring of N.

(ii)
$$x_{\bar{i}} \in \overline{A} \Longrightarrow (y+x-y)_{\bar{i}} \in \vee q\overline{A} \ \forall \ x, y \in N$$
,

(iii)
$$x_{\overline{t}} \in \overline{A} \Longrightarrow (xy)_{\overline{t}} \in \vee q \overline{A} \forall x, y \in N$$
,

(iv)
$$i_{\bar{t}} \in \overline{A} \Longrightarrow (x(y+i)-xy)_{\bar{t}} \in \forall q \, \overline{A}$$
 for any $x, y, i \in N$. and $t \in (0,1]$

An i-v fuzzy subset \overline{A} with conditions (i), (ii) and (iii) is called an $(\in, \in \lor q)$ -i-v fuzzy right ideal of N. If \overline{A} satisfies (i), (ii) and (iv), then it is called an $(\in, \in \lor q)$ i-v fuzzy left ideal of N.

Lemma 3.11. 23Let \overline{A} be an i-v fuzzy subset of N. Then

(I) (a)
$$\overline{A}$$
 is an $(\in, \in \lor q)$ - i-v fuzzy subnear-ring of N and

(b)
$$\overline{A}(x-y), \overline{A}(xy) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\} \ \forall \ x, y \in \mathbb{N}$$
 are equivalent.

(II) (c)
$$x_{\bar{t}} \in \overline{A} \Longrightarrow (y+x-y)_{\bar{t}} \in \forall q \ \overline{A}$$
 and

(d)
$$\overline{A}(y+x-y) \ge min^i \{\overline{A}(x), \overline{0.5}\} \ \forall \ x, y \in N$$
 are equivalent.

(III) (e)
$$x_{\overline{t}} \in \overline{A} \Longrightarrow (xy)_{\overline{t}} \in \forall q \overline{A}$$
 and

(f)
$$\overline{A}(xy) \ge min^i \{\overline{A}(x), \overline{0.5}\} \ \forall \ x, y \in N$$
 are equivalent.

(IV) (g)
$$i_{\bar{t}} \in \overline{A} \Longrightarrow (y(x+i)-yx)_{\bar{t}} \in \vee q \ \overline{A}$$
 and

(h)
$$\overline{A}(y(x+i)-yx) \ge min^i \{\overline{A}(i), \overline{0.5}\}\$$
 for any $x, y, i \in N$ are equivalent.

Proof. $(a) \Leftrightarrow (b)$ It follows from Theorem 3.7.

$$(c) \Rightarrow (d)$$
 Let $x, y \in N$ and $\overline{A}(x) < \overline{0.5}$. Assume that $\overline{A}(y + x - y) < \overline{A}(x)$.

Choose \bar{t} such that $\overline{A}(y+x-y) < \bar{t} \le \overline{A}(x)$.

Then
$$x_{\bar{i}} \in \overline{A}$$
 and $(y+x-y)_{\bar{i}} \in \overline{\vee q} \, \overline{A}$ which contradicts (c). Thus $\overline{A}(y+x-y) \geq \overline{A}(x)$.

Next, let
$$\overline{A}(x) \ge \overline{0.5}$$
.(1) Assume that $\overline{A}(y+x-y) < \overline{0.5}$. (2)

From (1) we have
$$x_{\overline{0.5}} \in \overline{A}$$
. But from (2) we have $(y+x-y)_{\overline{0.5}} = \overline{+} \sqrt{q} \overline{A}$, a contradiction. Hence (d) holds. (d) \Rightarrow (c) Let $x_{\overline{t}} \in \overline{A}$ and $y \in N$. Then $\overline{A}(x) \geq \overline{t}$. By (d),

$$\overline{A}(y+x-y) \ge min^i \{\overline{A}(x), \overline{0.5}\} \ge min^i \{\overline{t}, \overline{0.5}\}.$$

Then
$$\overline{A}(y+x-y) \ge \overline{t}$$
 if $\overline{t} \le \overline{0.5}$ and $\overline{A}(y+x-y) \ge \overline{0.5}$ if $\overline{t} > \overline{0.5}$. Hence $(y+x-y)_{\overline{t}} \in \vee q \overline{A}$. Thus (c) holds.

(e)
$$\Rightarrow$$
 (f) Assume that (e) is valid and let $x, y \in N$. Let $\overline{A}(x) < \overline{0.5}$. Assume that $\overline{A}(xy) < \overline{A}(x)$. Choose \overline{t} such that $\overline{A}(xy) < \overline{t} \le \overline{A}(x)$,

then
$$x_{\tilde{t}} \in \overline{A}$$
 and $(xy)_{\tilde{t}} \in \sqrt{q} \overline{A}$ which contradicts (e). So $\overline{A}(xy) \ge \overline{A}(x)$. Next, let $\overline{A}(x) \ge \overline{0.5}$.(3)

Assume that
$$\overline{A}(xy) < \overline{0.5}$$
. (4)

From (3), we have
$$x_{\overline{0.5}} \in \overline{A}$$
. From (4), we have $(xy)_{\overline{0.5}} \in \sqrt{q} \overline{A}$, which contradicts (e). Hence (f) holds.

(f)
$$\Longrightarrow$$
 (e) Let $x_{\overline{i}} \in \overline{A}$ and $y \in N$. By (f),

$$\overline{A}(xy) \ge min^i \{ \overline{A}(x), \overline{0.5} \} \ge min^i \{ \overline{t}, \overline{0.5} \}.$$

Then
$$\overline{A}(xy) \ge \overline{t}$$
 if $\overline{t} \le \overline{0.5}$ and $\overline{A}(xy) \ge \overline{0.5}$ if $\overline{t} > \overline{0.5}$. Hence $(xy)_{\overline{t}} \in \vee q \overline{A}$.

Thus (e) holds.

Similarly it can be shown that (g) and (h) are equivalent.

Theorem 3.12. 24An i-v fuzzy subset A of N is an $(\in, \in \lor q)$ - i-v fuzzy ideal of N if and only if $\forall x, y, i \in N$,

(i)
$$\overline{A}(x-y) \ge min^i \{ \overline{A}(x), \overline{A}(y), \overline{0.5} \},$$

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

- (ii) $\overline{A}(y+x-y) \ge min^i \{\overline{A}(x), \overline{0.5}\},$
- (iii) $\overline{A}(xy) \ge min^i \{ \overline{A}(x), \overline{0.5} \},$
- (iv) $\overline{A}(y(x+i)-yx) \ge min^i \{\overline{A}(i), \overline{0.5}\}.$

Proof. The proof is straightforward from Lemma 3.11.

Remark 3.13 25 An i-v fuzzy ideal of N according to the Definition 2.9 is an $(\in, \in \lor q)$ - i-v fuzzy ideal of N. But the converse, in general, is not true as shown by the following example.

Example 3.14 26 Consider the $(\in, \in \lor q)$ - i-v fuzzy subnear-ring \overline{A} of N as defined in example 3.9. Then \overline{A} is an $(\in, \in \lor q)$ - i-v fuzzy ideal of N. But since

 $\overline{A}(0) = \overline{A}(b0) \not\geq \overline{A}(b), \overline{A}$ is not an i-v fuzzy ideal of N.

Theorem 3.15 27 A non-empty subset I of N is a subnear-ring (ideal) of N if and only if \overline{K}_I is a characteristic function an $(\in, \in \vee q)$ - i-v fuzzy subnear-ring (ideal) of N.

Proof. We prove the result for ideals. Let I be an ideal of N. It is clear that \overline{K}_I (characteristic function) is an i-v fuzzy ideal of N. By Remark 3.8, \overline{K}_I is an $(\in, \in \vee q)$ - i-v fuzzy ideal of N.

Conversely, let \overline{K}_I be an $(\in, \in \vee q)$ - i-v fuzzy ideal of N. For any $x, y \in I$, we have

$$\overline{K}_I(x-y) \ge min^i \{\overline{K}_I(x), \overline{K}_I(y), \overline{0.5}\} = min\{\overline{1}, \overline{1}, \overline{0.5}\} = \overline{0.5},$$

and so $\overline{K}_I(x-y) = \overline{1}$. Thus $x-y \in I$. Let $a \in N$ and $x \in I$. Then

$$\overline{K}_I(a+x-a) \ge \min^i \{\overline{K}_I(x), \overline{0.5}\} = \overline{0.5},$$

and thus $\overline{K}_I(a+x-a)=\overline{1}$. This shows that $a+x-a\in I$, and therefore (I,+) is a normal subgroup of (N,+). Now let $a\in N$ and $x\in I$. Then

$$\overline{K}_I(xa) \ge min^i \{ \overline{K}_I(x), \overline{0.5} \} = \overline{0.5},$$

and so $xa \in I$. Finally let $a,b \in N$ and $i \in I$. Then

$$\overline{K}_I(a(b+i)-ab) \ge min^i \{\overline{K}_I(i), \overline{0.5}\} = \overline{0.5},$$

which implies that $a(b+i)-ab \in I$. Consequently, I is an ideal of N.

Theorem 3.16 28 29 An i-v fuzzy subset \overline{A} of N is an $(\in, \in \lor q)$ -i-v fuzzy subnear-ring (ideal) of N if and only if the level subset $\overline{A}_{\overline{t}}$ is a subnear-ring (ideal) of $N \forall \overline{0} < \overline{t} < \overline{0.5}$.

Proof. $\overline{A}(xy) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\} \ge min^i \{\overline{t}, \overline{t}, \overline{0.5}\} = \overline{t}$, oof. We prove the result in the case of $(\in, \in \lor q)$ - i-v fuzzy ideals. Let \overline{A} be an $(\in, \in \lor q)$ - i-v fuzzy ideal of N. Let $\overline{t} \le \overline{0.5}$ and $x, y, i \in \overline{A_i}$. Then

- (i) $\overline{A}(x-y) \ge min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\} = min^i \{\overline{t}, \overline{t}, \overline{0.5}\} = \overline{t}$, and so $x-y \in \overline{A}_i$.
- (ii) and so $xy \in \overline{A_t}$.
- (iii) $\overline{A}(y+x-y) \ge min^i \{\overline{A}(x), \overline{0.5}\} \ge min^i \{\overline{t}, \overline{0.5}\} = \overline{t}$, and so $y+x-y \in \overline{A_i}$.
- (iv) For every $z \in N$, we have $A(xz) \ge min^i \{\overline{A}(x), \overline{0.5}\} \ge min^i \{\overline{t}, \overline{0.5}\} = \overline{t}$, and so $xz \in \overline{A}_i$.
- (v) For every $a,b \in N$, we have $\overline{A}(a(b+i)-ab) \ge min^i \{\overline{A}(i),\overline{0.5}\} = min^i \{\overline{t},\overline{0.5}\} = \overline{t}$, and thus $a(b+i)-ab \in \overline{A_i}$. So $\overline{A_i}$ is an ideal of N.

Conversely, let $\overline{A_t}$ be an ideal of $N \ \forall \ t \le \overline{0.5}$. If possible, let there exist $x, y \in N$ such that

$$\overline{A}(x-y) < min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\}.$$

Choose t such that

$$\overline{A}(x-y) < \overline{t} < min^i {\overline{A}(x), \overline{A}(y), \overline{0.5}}.$$

Then $x, y \in \overline{A_i}$. Since $\overline{A_i}$ is an ideal of N, we have $x - y \in \overline{A_i}$. Thus $\overline{A}(x - y) \ge \overline{t}$, a contradiction to our assumption. So $\overline{A}(x - y) \ge \min^i \{\overline{A}(x), \overline{A}(y), \overline{0.5}\} \ \forall \ x, y \in N$.

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

Similarly it can be shown that

$$\overline{A}(xy) \ge min^i \{ \overline{A}(x), \overline{A}(y), \overline{0.5} \},$$

$$\overline{A}(y+x-y) \ge min^i \{\overline{A}(x), \overline{0.5}\},\$$

$$\overline{A}(x(y+i)-xy) \ge min^i \{\overline{A}(i), \overline{0.5}\},\$$

 $\forall x, y, i \in \mathbb{N}$. Therefore, \overline{A} is an $(\in, \in \vee q)$ i-v fuzzy ideal of \mathbb{N} .

Remark 3.17 3031Let \overline{A} be an $(\in, \in \vee q)$ - i-v fuzzy subnear-ring (ideal) of N, then the level subset $\overline{A_t}$

may not be a subnear-ring(ideal) of $N \ \forall \ \bar{t} \in D(0.5,1]$. Since by Remark 3.4, $\overline{A_i}, \bar{t} \in D(0.5,1]$, may not be a subgroup of N.

4. An $(\in, \in \vee q)$ - i-v Fuzzy Quasi-Ideals:

In this section, we introduce the notion of an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal of a near-ring which is a generalization of $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal of a near-ring.

Definition 4.1 3233An $(\in, \in \lor q)$ i-v fuzzy subgroup \overline{A} of N is called an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal of N if $\forall x \in N$,

$$\overline{A}(x) \ge \min^{i} \{ ((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N \circ \overline{A}))(x), \overline{0.5} \}, \text{ that is, } \overline{A}(x) \ge \min^{i} \{ (\overline{A} \circ N)(x), (N \circ \overline{A})(x), (N \circ \overline{A})(x), \overline{0.5} \}.$$

Remark 4.2 34 Every i-v fuzzy quasi-ideal (according to the Definition 3.11 of N is an $(\in, \in \lor q)$ -i-v fuzzy quasi-ideal of N. But the converse is not necessarily true as shown by the following example.

Example 4.3 35Consider the set integer modulo 4, $Z_4 = \{0,1,2,3\}$ with the following operations.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

٠	0	1	2	3
0	0	0	0	0
1	0	2	0	1
2	0	2	0	3
3	0	0	0	2

Clearly $(Z_4,+,.)$ is a near-ring. Let an i-v fuzzy subset

 $\overline{A}: Z_4 \to D[0,1]$ be defined by $\overline{A}(0) = \overline{0.6}, \overline{A}(1) = \overline{0.4}, \overline{A}(2) = \overline{0.8}, \overline{A}(3) = \overline{0.4}$. Then \overline{A} is an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal of Z_4 . But \overline{A} is not an i-v fuzzy quasi-ideal of Z_4 .

Since $\overline{A}(0) \geq min^i \{ (\overline{A} \circ N)(0), (N \circ \overline{A})(0), (N * \overline{A})(0) \}.$

Remark 4.4 36 If \overline{Q} is a quasi-ideal of N, then $\overline{K}_{\mathcal{Q}}$ is an i-v fuzzy quasi-ideal and also an $(\in, \in \vee q)$ - i-v fuzzy quasi-ideal of N.

Theorem 4.5 37 A non-empty i-v fuzzy subset \overline{Q} of N is a quasi-ideal of N if and only if \overline{K}_{Q} is an $(\in, \in \vee q)$ - i-v fuzzy quasi-ideal of N.

Proof. Let \overline{Q} be a quasi-ideal of $N.\overline{K}_Q$ is an $(\in, \in \vee q)$ - i-v fuzzy quasi-ideal of N.

conversely, let $\overline{K}_{\mathcal{Q}}$ be an $(\in, \in \vee q)$ - i-v fuzzy quasi-ideal of N. Let a be any element of $\overline{Q}N \cap N\overline{Q} \cap N^*\overline{Q}$. Then there exist element c, x, y of N and elements b, i of \overline{Q} such that a = bc = x(y+i) - xy. Now we have

$$(\overline{K}_{\mathcal{Q}} \circ N)(a) = \sup_{a=pq} [\min^{i} {\{\overline{K}_{\mathcal{Q}}(p), N(q)\}}] \ge \min^{i} {\{\overline{K}_{\mathcal{Q}}(b), N(c)\}} = \min {\{\overline{1}, \overline{1}\}} = \overline{1}.$$

So
$$(\overline{K}_{\mathcal{Q}} \circ N)(a) = \overline{1}$$
. Similarly, $(N \circ \overline{K}_{\mathcal{Q}})(a) = \overline{1}$. Moreover, $(N * \overline{K}_{\mathcal{Q}})(a) = (N * \overline{K}_{\mathcal{Q}})(x(y+i) - xy) \ge \overline{K}_{\mathcal{Q}}(i) = \overline{1}$.

Hence, $\overline{K}_{\mathcal{Q}}(a) \geq \min^{i} \{ (\overline{K}_{\mathcal{Q}} \circ N)(a), (N \circ \overline{K}_{\mathcal{Q}})(a), (N * \overline{K}_{\mathcal{Q}})(a), \overline{0.5} \} = \overline{0.5}$, and so $\overline{K}_{\mathcal{Q}}(a) = \overline{1}$ which means $a \in \mathcal{Q}$. Therefore $\overline{Q}N \cap N\overline{Q} \cap N * \overline{Q} \subseteq \overline{Q}$. Hence \overline{Q} is a quasi-ideal of N.

Remark 4.6 38 Note that in general an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal in a near-ring N is not an $(\in, \in \lor q)$ - i-v fuzzy subnear-ring of N. In fact, we obtain an example of an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal which is not an $(\in, \in \lor q)$ - i-v fuzzy subnear-ring and obtain conditions for an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal in a near-ring to be an $(\in, \in \lor q)$ - i-v fuzzy subnear-ring.

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

```
Example 4.7 39 Consider the non-zero-symmetric near-ring (N,+,.) as defined in Example . Define an i-v fuzzy subset
\overline{A}: N \to D[0,1] by \overline{A}(0) = \overline{0.7}, \overline{A}(a) = \overline{0.3} = \overline{A}(b), \overline{A}(c) = \overline{0.6}. Then \overline{A} is an (\in, \in \lor q) - i-v fuzzy quasi-ideal of
N. But since \overline{A}(a) = \overline{A}(co) \not\geq min^i \{\overline{A}(c), \overline{A}(o), \overline{0.5}\}, \overline{A} is not an (\in, \in \vee q) - i-v fuzzy subnear-ring of N.
Theorem 4.8 40 Every (\in, \in \vee q) - i-v fuzzy quasi-ideal in a zero-symmetric near-ring is an (\in, \in \vee q) - i-v fuzzy subnear-ring.
Proof. Let A be an (\in, \in \vee q) - i-v fuzzy quasi-ideal in a zero-symmetric near-ring N. Choose a, b, c, x, y, i \in N such that
a = bc = x(y+i) - xy. Then
\overline{A}(a) \ge \min^{i} \{ (\overline{A} \circ N)(a), (N \circ \overline{A})(a), (N \mathring{a} \overline{A})(a), \overline{0.5} \}
= min^{i} \{ sup_{a-bc}^{i} [min^{i} \{ \overline{A}(b), N(c) \} ], sup_{a-bc}^{i} [min^{i} \{ N(b), \overline{A}(c) \} ], sup_{a-c}^{i} \{ A(i), \overline{0.5} \} \}
\geq min^{i} \{ sup_{a-bc}^{i} [min^{i} \{ \overline{A}(b), N(c) \} ], sup_{a-bc}^{i} [min^{i} \{ N(b), \overline{A}(c) \} ], sup_{a-b(0+c)-b0}^{i} \{ \overline{A}(c), \overline{0.5} \} \}
= min^{i} \{ sup \overline{A}(b), sup \overline{A}(c), sup \overline{A}(c), \overline{0.5} \}
since N is zero-symmetric
\geq min^{i}\{A(b), A(c), 0.5\}.
Therefore \overline{A}(bc) \ge min\{\overline{A}(b), \overline{A}(c), \overline{0.5}\}. Hence \overline{A} is an (\in, \in \lor q) - i-v fuzzy subnear-ring of N.
Theorem 4.9 41 Every (\in, \in \vee q) - i-v fuzzy right ideal of N is an (\in, \in \vee q) - i-v fuzzy quasi-ideal of N.
Proof. Let A be an (\in, \in \vee q) - i-v fuzzy right ideal of N. Choose a, b, c, x, y, i \in N,
such that a = bc = x(y+i) - xy. Then
((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N * \overline{A}))(a)
= min^{i} \{ (\overline{A} \circ N)(a), (N \circ \overline{A})(a), (N * \overline{A})(a) \}
= \min^{i} \{ \sup_{a=bc}^{i} \{ \min^{i} \{ \overline{A}(b), N(c) \} \}, \sup_{a=bc}^{i} \{ \min^{i} \{ N(b), \overline{A}(c) \} \}, (N*\overline{A})(x(y+i)-xy) \} \}
(Since N(z) = 1 \forall z \in N)
= min^{i} \{ sup^{i} \overline{A}(b), \overline{A}(c), (N * \overline{A})(x(y+i) - xy) \}. (5)
= min^{i} \{ ((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N * \overline{A}))(a), \overline{0.5} \}
= min^{i} \{ min^{i} \{ sup \overline{A}(b), sup \overline{A}(c), (N*\overline{A})(x(y+i)-xy) \}, \overline{0.5} \}
= min^{i} \{ min^{i} \{ sup \overline{A}(b), \overline{0.5} \}, sup \overline{A}(c), (N * \overline{A})(x(y+i)-xy) \} \}
(since \overline{A} is an (\in, \in \vee q) - i-v fuzzy right ideal, \overline{A}(bc) \ge min^i \{\overline{A}(b), \overline{0.5}\})
\leq min^{i}\{\overline{A}(bc), N(c), N(x(y+i)-xy)\} = \overline{A}(bc).
Thus \overline{A}(a) \not\geq min^i \{((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N \circ \overline{A}))(a), \overline{0.5}\}. So, \overline{A} is an (\in, \in \vee q) i-v fuzzy quasi-ideal of N.
Theorem 4.10 42 Every (\in, \in \vee q) - i-v fuzzy left ideal of N is an (\in, \in \vee q) - i-v fuzzy quasi-ideal of N.
Proof. Let A be an (\in, \in \lor q) - i-v fuzzy left ideal of N. Choose a,b,c,x,y,i \in N, such that a=bc=x(y+i)-xy.
Then ((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N * \overline{A}))(a)
= min^{i} \{ sup^{i} \overline{A}(b), \overline{A}(c), (N * \overline{A})(x(y+i) - xy) \} (by(5))
= min^{i} \{ sup^{i} \overline{A}(b), sup^{i} \overline{A}(c), sup^{i} \overline{A}(i) \}  (6)
= min^{i} \{ ((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N * \overline{A}))(a), \overline{0.5} \}
= min^{i} \{ min^{i} \{ sup^{i} \overline{A}(b), sup^{i} \overline{A}(c), sup^{i} \overline{A}(i) \}, \overline{0.5} \}
= min^{i} \{ min^{i} \{ sup^{i} \overline{A}(b), sup^{i} \overline{A}(c), min^{i} \{ sup^{i} \overline{A}(i), \overline{0.5} \} \}
(since \overline{A} is an (\in, \in \vee q) - i-v fuzzy left ideal, \overline{A}(x(y+i)-xy) \ge min^i \{\overline{A}(i), \overline{0.5}\})
\leq \min^{i} \{N(b), N(c), \overline{A}(x(y+i)-xy)\} = \overline{A}(x(y+i)-xy) = \overline{A}(a).
```

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

Thus, $\overline{A}(a) \not\geq min^i \{((\overline{A} \circ N) \cap (N \circ \overline{A}) \cap (N \circ \overline{A}))(a), \overline{0.5}\}$. Hence \overline{A} is an $(\in, \in \vee q)$ - i-v fuzzy quasi-ideal of N.

Theorem 4.11 43 Every $(\in, \in \lor q)$ - i-v fuzzy ideal of N is an $(\in, \in \lor q)$ - i-v fuzzy quasi-ideal of N. The proof is straight forward from Theorem 4.9 and Theorem 4.10

References:

- 1. S.K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy sets and systems, 51 (1992), 235-241.
- 2. S.K. Bhakat $(\in, \in \vee q)$ Fuzzy normal, quasi-normal and maximal subgroups, Fuzzy Sets System. 112 (2000), 299-312.
- 3. S.K. Bhakat $(\in, \in \lor q)$ Level subsets, Fuzzy Sets System. 103 (1999), 529-533.
- 4. S.K. Bhakat and P. Das, $(\in, \in \lor q)$ Fuzzy subgroup, Fuzzy Sets System, 80, 359-368.
- 5. S.K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets System, 81, 383-393.
- 6. V. Chinnadurai and S. Kadalarasi, Interval valued fuzzy quasi-ideals of near-rings, Annals of Fuzzy Mathematics and Informatics, 11 (2016), No. 4, 621-631.
- 7. B. Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, journals of Sciences, Islamic republic of Iran, 12 (2001), No. 2, 171-175.
- 8. B. Davvaz, $(\in, \in \lor q)$ fuzzy subnear-rings and ideals, Soft Comput, 10: (2006), 206-211.
- 9. V.N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Sets and Systems, 49, (1992), 205-213.
- 10. Gunter Pilz, Near rings: The theory and its applications, North-Halland Publishing Company, Amsterdam, 1983.
- 11. R. Kumar, Certain fuzzy ideals of rings redefined, Fuzzy Sets and Systems, 46, (1992), 251-260.
- 12. R. Kumar, Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42 (1991), 369-379.
- 13. W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139.
- 14. P.P. Ming and L.Y. Ming, Fuzzy Topology I: Neighbourhood structure of a fuzzy point and moore-smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
- 15. AL. Narayanan, Contributions to the algebraic structures in fuzzy theory, Ph.D. Thesis, Annamalai University, 2001.
- 16. AL. Narayanan and T. Manikantan $(\in, \in \lor q)$ Fuzzy subnear-ring and $(\in, \in \lor q)$ -fuzzy ideals of near-rings, J.Appl. Math. and Computing, Vol. 18 (2005), No.1-2, pp. 419-430.
- 17. A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Application, 35 (1971), 512-517.
- 18. Salah Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems. 44(1991), 139-146.
- 19. N. Thillaigovindan, V.Chinnadurai and S. Kadalarasi, Interval valued Fuzzy ideal of Near-rings, The Journal of Fuzzy Mathematics, 23 (2015), No. 2, 471-484.
- 20. L.A Zadeh, Fuzzy Sets, Information and Control, 8 (1965) 338-353.