International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, July - 2017

ON (1, 2)*- g" - CLOSED SETS IN BITOPOLOGICAL SPACE

Assistant Professor, Department of Mathematics, Vivekananda College, Tiruvedakam, Madurai, Tamilnadu

Cite This Article: Dr. C. Rajan, "On $(1, 2)^*$ - g''' - Closed Sets in Bitopological Space", International Journal of Current Research and Modern Education, Special Issue, July, Page Number 148-155, 2017.

Abstract:

In this paper, we offer a new class of sets called $(1, 2)^*-g'''$ -closed sets in bitopological spaces and we study some of its basic properties. It turns out that this class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1, 2)^*-g$ -closed sets.

Key Words: bitopological space, $(1, 2)^*$ -g-closed set, $(1, 2)^*$ -g'''-closed set, $(1, 2)^*$ -g'''-open set & $(1, 2)^*$ - ω -closed set

1. Introduction:

In 1963 Levine [19] introduced the notion of semi-open sets. According to Cameron [7] this notion was Levine's most important contribution to the field of topology. The motivation behind the introduction of semi-open sets was a problem of Kelley which Levine has considered in [20], i.e., to show that $cl(U) = cl(U \cap D)$ for all open sets U and dense sets D. He proved that U is semi-open if and only if $cl(U) = cl(U \cap D)$ for all dense sets D and D is dense if and only if $cl(U) = cl(U \cap D)$ for all semi-open sets U. Since the advent of the notion of semi-open sets, many mathematicians worked on such sets and also introduced some other notions, among others, preopen sets [22], α -open sets [25] and β -open sets [1] (Andrijevic [3] called them semi-pre open sets). It has been shown in [11] recently that the notion of preopen sets and semi-open sets are important with respect to the digital plane.

Levine [18] also introduced the notion of g-closed sets and investigated its fundamental properties. This notion was shown to be productive and very useful. For example it is shown that g-closed sets can be used to characterize the extremally disconnected spaces and the submaximal spaces (see [8] and [9]). Moreover the study of g-closed sets led to some separation axioms between T_0 and T_1 which proved to be useful in computer science and digital topology (see [17] and [14])).

Recently, Bhattacharya and Lahiri [5], Arya and Nour [4], Sheik John [31] and Rajamani and Viswanathan [28] introduced sg-closed sets, gs-closed sets, ω -closed sets and αgs -closed sets respectively.

In this paper, we introduce a new class of sets namely $(1, 2)^*-g'''$ -closed sets in bitopological spaces. This class lies between the class of closed sets and the class of $(1, 2)^*-g$ -closed sets. This class also lies between the class of closed sets and the class of $(1, 2)^*-\omega$ -closed sets.

2. Preliminaries:

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. We recall the following definitions which are useful in the sequel.

Definition 2.1:

A subset A of a space (X, τ) is called:

- (i) $(1,2)^*$ -semi-open set [19] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- (ii) (1,2)*-preopen set [22] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A));
- (iii) (1,2)*- α -open set [25] if $A \subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)));
- (iv) (1,2)*- β -open set [1] (= (1,2)*-semi-preopen [3]) if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)));
- (v) regular $(1,2)^*$ -open set [32] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complements of the above mentioned $\tau_{1,2}$ -open sets are called their respective $\tau_{1,2}$ -closed sets.

The $(1,2)^*$ -preclosure [26] (resp. $(1,2)^*$ -semi-closure [10], $(1,2)^*$ - α -closure [25], $(1,2)^*$ -semi-pre-closure [3]) of a subset A of X, denoted by $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ -scl(A), $(1,2)^*$ -spcl(A)) is defined to be the intersection of all $(1,2)^*$ -preclosed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*$ -semi-preclosed) sets of X containing A. It is known that $(1,2)^*$ -pcl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ - α -closed, $(1,2)^*$ -spcl(A)) is a $(1,2)^*$ -preclosed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*$ -closed, $(1,2)^*$ -semi-preclosed) set. For any subset A of an arbitrarily chosen bitopological space, the $(1,2)^*$ -semi-interior [10] (resp. $(1,2)^*$ - α -interior [25], $(1,2)^*$ -preinterior [26]) of A, denoted by $(1,2)^*$ -sint(A) (resp. $(1,2)^*$ - α int(A), $(1,2)^*$ -print(A)), is defined to be the union of all $(1,2)^*$ -semi-open (resp. $(1,2)^*$ - α -open, $(1,2)^*$ -preopen) sets of X contained in A.

Definition 2.2:

A subset A of a bitopological space X is called

- (i) (1,2)*-generalized closed (briefly, (1,2)*-g-closed) set [18] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. The complement of (1,2)*-g-closed set is called (1,2)*-g-open set;
- (ii) $(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) set [5] if $(1,2)^*$ -scl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -semi-open in X.
 - The complement of sg-closed set is called sg-open set;
- (iii) (1,2)*-generalized semi-closed (briefly, (1,2)*-gs-closed) set [4] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X.

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

The complement of (1,2)*-gs-closed set is called (1,2)*-gs-open set;

- (iv) $(1,2)^*-\alpha$ -generalized closed (briefly, $(1,2)^*-\alpha$ g-closed) set [21] if $(1,2)^*-\alpha$ cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X.
 - The complement of $(1,2)^*$ - α g-closed set is called $(1,2)^*$ - α g-open set;
- (v) $(1,2)^*$ -generalized semi-preclosed (briefly, $(1,2)^*$ -gsp-closed) set [26] if $(1,2)^*$ -spcl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X.
 - The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open set;
- (vi) $(1,2)^*$ - \hat{g} -closed set [33] $((1,2)^*$ - ω -closed [31]) if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ - \hat{g} -closed set is called $(1,2)^*$ - \hat{g} -open set;
- (vii) $(1,2)^*$ - αgs -closed set [28] if $(1,2)^*$ - α cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ - αgs -closed set is called $(1,2)^*$ - αgs -open set;
- (viii) $(1,2)^*$ -g*s-closed set [23] if $(1,2)^*$ -scl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -gs-open in X. The complement of $(1,2)^*$ -g*s-closed set is called $(1,2)^*$ -g*s-open set;
- (ix) $(1,2)^*$ - g_{α}^{m} -closed set [29] if $(1,2)^*$ - α cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -gs-open in X. The complement of $(1,2)^*$ - g_{α}^{m} -closed set is called $(1,2)^*$ - g_{α}^{m} -open set.

Remark 2.3:

The collection of all $(1,2)^*$ - g'''-closed (resp. $(1,2)^*$ - g'''_α -closed, $(1,2)^*$ - ω -closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -

The collection of all $(1,2)^*$ - g''' -open (resp. $(1,2)^*$ - g''' -open, $(1,2)^*$ - ω -open, $(1,2)^*$ -g-open, $(1,2)^*$ -gs-open, $(1,2)^*$ -go-open, $(1,2)^*$

We denote the power set of X by P(X).

Definition 2.4 [16]:

A subset S of X is said to be $(1,2)^*$ -locally closed if $S = U \cap F$, where U is $\tau_{1,2}$ -open and F is $\tau_{1,2}$ -closed in X.

Result 2.5:

- (1) Every $\tau_{1,2}$ -open set is $(1,2)^*$ -g*s-open [23].
- (2) Every $(1,2)^*$ -semi-open set is $(1,2)^*$ -g*s-open [23].
- (3) Every $(1,2)^*$ -g*s-open set is $(1,2)^*$ -sg-open [23].
- (4) Every (1,2)*-semi-closed set is (1,2)*-gs-closed [24].
- (5) Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -gs-closed [12].

Corollary 2.6 [27]:

Let A be both $\tau_{1,2}$ -open and $(1,2)^*$ -sg-closed set and suppose that F is $\tau_{1,2}$ -closed set. Then A \cap F is $(1,2)^*$ -gs-closed set.

3. (1,2)*-g''' -Closed Sets:

We introduce the following definition.

Definition 3.1:

A subset A of X is called a $(1,2)^*$ - g'''-closed set if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -gs-open in X.

Proposition 3.2:

Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -g'''-closed.

Proof:

If A is any $\tau_{1,2}$ -closed set in X and G is any $(1,2)^*$ -gs-open set containing A, then $G \supseteq A = \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ -g'''-closed. The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then G''' $C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{a, c\}$ is g''' -closed set but not closed.

Proposition 3.4:

Every $(1,2)^*$ - g'''-closed set is $(1,2)^*$ - g_{α}''' -closed.

Proof:

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

If A is a $(1,2)^*$ - g'''-closed subset of X and G is any $(1,2)^*$ -gs-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - g'''_{α} -closed in X. The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{b\}, X\}$. Then $(1,2)^*$ -G''' $C(X) = \{\phi, \{a, c\}, X\}$ and $(1,2)^*$ -G''' $C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Here, $A = \{a\}$ is $(1,2)^*$ -g'''-closed but not $(1,2)^*$ -g'''-closed set in X.

Proposition 3.6:

Every $(1,2)^*-g'''$ -closed set is $(1,2)^*-g^*$ s-closed.

Proof:

If A is a $(1,2)^*$ - g'''-closed subset of X and G is any $(1,2)^*$ -gs-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -g*s-closed in X. The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7:

In Example 3.5, $(1,2)^*$ -G*SC(X) = $\{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Here, A = $\{c\}$ is $(1,2)^*$ -g*s-closed but not $(1,2)^*$ -g"-closed set in X.

Proposition 3.8:

Every $(1,2)^*$ - g'''-closed set is $(1,2)^*$ - ω -closed.

Proof:

Suppose that $A \subseteq G$ and G is $(1,2)^*$ -semi-open in X. Since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -gs-open and A is $(1,2)^*$ -g'''-closed, therefore $\tau_{1,2}$ -cl(A) $\subseteq G$. Hence A is $(1,2)^*$ - ω -closed in X. The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $(1,2)^*$ -G''' $C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ - ω C(X) = P(X). Here, $A = \{a, c\}$ is $(1,2)^*$ - ω -closed but not $(1,2)^*$ -g'''-closed set in X.

Proposition 3.10:

Every $(1,2)^*$ -g*s-closed set is $(1,2)^*$ -sg-closed.

Proof:

Suppose that $A \subseteq G$ and G is $(1,2)^*$ -semi-open in X. Since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -gs-open and A is $(1,2)^*$ -g*s-closed, therefore $(1,2)^*$ -scl $(A) \subseteq G$. Hence A is $(1,2)^*$ -sg-closed in X. The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $(1,2)^*$ -G*SC(X) = $\{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ -SGC(X) = P(X). Here, $A = \{a, b\}$ is $(1,2)^*$ -sg-closed but not $(1,2)^*$ -g*s-closed set in X.

Proposition 3.12:

Every $(1,2)^*$ - ω -closed set is $(1,2)^*$ - αgs -closed.

Proof:

If A is a $(1,2)^*$ - ω -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α gs -closed in X. The converse of Proposition 3.12 need not be true as seen from the following example.

Example 3.13:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $(1,2)^* - \omega C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^* - \alpha GS C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Here, $A = \{b\}$ is $(1,2)^* - \alpha gs$ -closed but not $(1,2)^* - \omega$ -closed set in X.

Proposition 3.14:

Every $(1,2)^*$ - g'''-closed set is $(1,2)^*$ -g-closed.

Proof:

If A is a $(1,2)^*$ - g'''-closed subset of X and G is any open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ -g-closed in X. The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $(1,2)^*$ -G''' $C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ -G C(X) = P(X). Here, $A = \{a, b\}$ is $(1,2)^*$ -g-closed but not $(1,2)^*$ -g'''-closed set in X.

Proposition 3.16:

Every $(1,2)^*$ - g'''-closed set is $(1,2)^*$ - αgs -closed.

Proof:

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

If A is a $(1,2)^*$ - g'''-closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α gs -closed in X. The converse of Proposition 3.16 need not be true as seen from the following example.

Example 3.17:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $(1,2)^* - G'''$ $C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^* - \alpha GS$ C(X) = P(X). Here, $A = \{a, c\}$ is $(1,2)^* - \alpha gS$ -closed but not $(1,2)^* - g'''$ -closed set in X.

Proposition 3.18:

Every $(1,2)^*$ - g'''-closed set is $(1,2)^*$ - α g-closed.

Proof:

If A is a $(1,2)^*$ - g'''-closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α g-closed in X. The converse of Proposition 3.18 need not be true as seen from the following example.

Example 3.19:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, \{a, b\}, X\}$. Then $(1,2)^*$ -G''' $C(X) = \{\phi, \{c\}, \{a, b\}, X\}$ and $(1,2)^*$ - αg C(X) = P(X). Here, $A = \{a, c\}$ is $(1,2)^*$ - αg -closed but not $(1,2)^*$ - αg -closed set in X.

Proposition 3.20:

Every $(1,2)^*$ - g''' -closed set is $(1,2)^*$ -gs-closed.

Proof:

If A is a $(1,2)^*-g^m$ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -gs-closed in X. The converse of Proposition 3.20 need not be true as seen from the following example.

Example 3.21:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $(1,2)^* - G'''$ $C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^* - GS$ $C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{c\}$ is $(1,2)^*$ -gs-closed but not $(1,2)^* - g'''$ -closed set in X.

Proposition 3.22:

Every $(1,2)^*$ - g^{m} -closed set is $(1,2)^*$ -gsp-closed.

Proof:

If A is a $(1,2)^*$ - g'''-closed subset of X and G is any $\tau_{1,2}$ -open set containing A, every $\tau_{1,2}$ -open set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -spcl(A). Hence A is $(1,2)^*$ -gsp-closed in X.

The converse of Proposition 3.22 need not be true as seen from the following example.

Example 3.23:

In Example 3.21, $(1,2)^*$ - GSP $C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Here, $A = \{c\}$ is $(1,2)^*$ -gsp-closed but not $(1,2)^*$ - g''' -closed set in X.

Remark 3.24:

The following example shows that $(1,2)^*$ -g'''-closed sets are independent of $(1,2)^*$ - α -closed sets and $(1,2)^*$ -semi-closed sets.

Example 3.25:

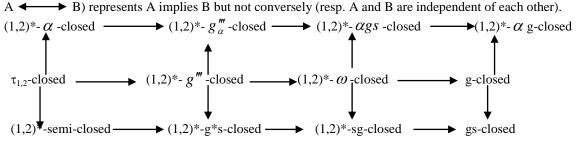
Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $(1,2)^*-G'''$ $C(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $(1,2)^*-\alpha$ C(X) = S $C(X) = \{\phi, \{c\}, X\}$. Here, $A = \{a, c\}$ is $(1,2)^*-g'''$ -closed but it is neither $(1,2)^*-\alpha$ -closed nor $(1,2)^*$ -semi-closed in X.

Example 3.26:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $(1, 2)^* - G'''$ $C(X) = \{\phi, \{b, c\}, X\}$ and $(1, 2)^* - \alpha$ C(X) = S $C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Here, $A = \{b\}$ is $(1, 2)^* - \alpha$ -closed as well as $(1, 2)^*$ -semi-closed in X but it is not $(1, 2)^* - \alpha$ -closed in X.

Remark 3.27:

From the above discussions and known results in [28, 31, 33], we obtain the following diagram, where $A \rightarrow B$ (resp.



International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

None of the above implications is reversible as shown in the remaining examples and in the related papers [28, 31, 33].

4. Properties of $(1,2)^*$ - g''' -Closed Sets:

In this section, we have proved that an arbitrary intersection of $(1,2)^*-g'''$ -closed sets is $(1,2)^*-g'''$ -closed. Moreover, we discuss some basic properties of $(1,2)^*-g'''$ -closed sets.

Definition 4.1:

The intersection of all (1,2)*-gs-open subsets of X containing A is called the (1,2)*-gs-kernel of A and denoted by (1,2)*-gs-ker(A).

Lemma 4.2:

A subset A of X is $(1,2)^*$ -g'''-closed if and only if $\tau_{1,2}$ -cl(A) $\subseteq (1,2)^*$ -gs-ker(A).

Proof:

Suppose that A is $(1,2)^*$ - g'''-closed. Then $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -gs-open. Let $x \in \tau_{1,2}$ -cl(A). If $x \notin (1,2)^*$ -gs-ker(A), then there is a $(1,2)^*$ -gs-open set U containing A such that $x \notin U$. Since U is a $(1,2)^*$ -gs-open set containing A, we have $x \notin \tau_{1,2}$ -cl(A) and this is a contradiction.

Conversely, let $\tau_{1,2}$ -cl(A) \subseteq (1,2)*-gs-ker(A). If U is any (1,2)*-gs-open set containing A, then $\tau_{1,2}$ -cl(A) \subseteq (1,2)*-gs-ker(A) \subset U. Therefore, A is (1,2)*-g'''-closed.

Proposition 4.3:

For any subset A of X, $X_2 \cap \tau_{1,2}$ -cl(A) \subseteq (1,2)*-gs-ker(A), where $X_2 = \{x \in X : \{x\} \text{ is } (1,2)$ *-preopen $\}$.

Proof:

Let $x \in X_2 \cap \tau_{1,2}\text{-cl}(A)$ and suppose that $x \notin (1,2)^*\text{-gs-ker}(A)$. Then there is a $(1,2)^*\text{-gs-open}$ set U containing A such that $x \notin U$. If F = X - U, then F is $(1,2)^*\text{-gs-closed}$. Since $\tau_{1,2}\text{-cl}(\{x\}) \subseteq \tau_{1,2}\text{-cl}(A)$, we have $\tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(\{x\})) \subseteq A \cup \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(\{x\}))$. Again since $x \in X_2$, we have $x \notin X_1$ and so $\tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(\{x\})) = \phi$. Therefore, there has to be some $y \in A \cap \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(\{x\}))$ and hence $y \in F \cap A$, a contradiction.

Theorem 4.4:

A subset A of X is $(1,2)^*$ - g'''-closed if and only if $X_1 \cap \tau_{1,2}$ -cl(A) \subseteq A, where $X_1 = \{x \in X : \{x\} \text{ is } (1,2)^*$ -nowhere dense}.

Proof:

Suppose that A is $(1,2)^*$ - g'''-closed. Let $x \in X_1 \cap \tau_{1,2}$ -cl(A). Then $x \in X_1$ and $x \in \tau_{1,2}$ -cl(A). Since $x \in X_1$, $\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\{x\}$)) $= \phi$. Therefore, $\{x\}$ is $(1,2)^*$ -semi-closed, since $\tau_{1,2}$ -int($\tau_{1,2}$ -cl($\{x\}$)) $\subseteq \{x\}$. Since every $(1,2)^*$ -semi-closed set is $(1,2)^*$ -gs-closed [Result 2.5 (4)], $\{x\}$ is $(1,2)^*$ -gs-closed. If $x \notin A$ and if $U = X \setminus \{x\}$, then U is a $(1,2)^*$ -gs-open set containing A and so $\tau_{1,2}$ -cl(A) $\subseteq U$, a contradiction.

Conversely, suppose that $X_1 \cap \tau_{1,2}\text{-cl}(A) \subseteq A$. Then $X_1 \cap \tau_{1,2}\text{-cl}(A) \subseteq (1,2)^*\text{-gs-ker}(A)$, since $A \subseteq (1,2)^*\text{-gs-ker}(A)$. Now $\tau_{1,2}\text{-cl}(A) = X \cap \tau_{1,2}\text{-cl}(A) = (X_1 \cup X_2) \cap \tau_{1,2}\text{-cl}(A) = (X_1 \cap \tau_{1,2}\text{-cl}(A)) \cup (X_2 \cap \tau_{1,2}\text{-cl}(A)) \subseteq (1,2)^*\text{-gs-ker}(A)$, since $X_1 \cap \tau_{1,2}\text{-cl}(A) \subseteq (1,2)^*\text{-gs-ker}(A)$ and Proposition 4.3. Thus, A is $(1,2)^*$ - g''' -closed by Lemma 4.2.

Theorem 4.5:

An arbitrary intersection of $(1,2)^*-g'''$ -closed sets is $(1,2)^*-g'''$ -closed.

Proof:

Let $F = \{A_i : i \in \land\}$ be a family of $(1,2)^*$ -g'''-closed sets and let $A = \bigcap_{i \in \land} A_i$. Since $A \subseteq A_i$ for each $i, X_1 \cap \tau_{1,2}$ -cl(A) $\subseteq X_1 \cap \tau_{1,2}$ -cl(A_i) for each i. Using Theorem 4.4 for each $(1,2)^*$ -g'''-closed set A_i , we have $X_1 \cap \tau_{1,2}$ -cl(A_i) $\subseteq A_i$. Thus, $X_1 \cap \tau_{1,2}$ -cl(A) $\subseteq X_1 \cap \tau_{1,2}$ -cl(A_i) $\subseteq A_i$ for each $i \in \land$. That is, $X_1 \cap \tau_{1,2}$ -cl(A) $\subseteq A_i$ and so A is $(1,2)^*$ -g'''-closed by Theorem 4.4.

Corollary 4.6:

If A is a $(1,2)^*$ - g'''-closed set and F is a $\tau_{1,2}$ -closed set, then A \cap F is a $(1,2)^*$ - g'''-closed set.

Proof:

Since F is closed, it is $(1,2)^*-g'''$ -closed. Therefore by Theorem 4.5, $A \cap F$ is also a $(1,2)^*-g'''$ -closed set.

Proposition 4.7:

If A and B are $(1,2)^*$ - g'''-closed sets in X, then $A \cup B$ is $(1,2)^*$ - g'''-closed in X.

Proof:

If $A \cup B \subseteq G$ and G is $(1,2)^*$ -gs-open, then $A \subseteq G$ and $B \subseteq G$. Since A and B are $(1,2)^*$ -g'''-closed, $G \supseteq \tau_{1,2}$ -cl(A) and $G \supseteq \tau_{1,2}$ -cl(A) and hence $G \supseteq \tau_{1,2}$ -cl(A) $\cup \tau_{1$

Proposition 4.8:

If a set A is $(1,2)^*$ - g'''-closed in X, then $\tau_{1,2}$ -cl(A) – A contains no nonempty $\tau_{1,2}$ -closed set in X.

Proof:

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

Suppose that A is $(1,2)^*$ - g'''-closed. Let F be a $\tau_{1,2}$ -closed subset of $\tau_{1,2}$ -cl(A) – A. Then A \subseteq F°. But A is $(1,2)^*$ - g'''-closed, therefore $\tau_{1,2}$ -cl(A) \subseteq F°. Consequently, F \subseteq $(\tau_{1,2}$ -cl(A))°. We already have F \subseteq $\tau_{1,2}$ -cl(A). Thus F \subseteq $\tau_{1,2}$ -cl(A) \cap $(\tau_{1,2}$ -cl(A))° and F is empty.

The converse of Proposition 4.8 need not be true as seen from the following example.

Example 4.9:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $(1,2)^*-G'''$ $C(X) = \{\phi, \{b, c\}, X\}$. If $A = \{b\}$, then $\tau_{1,2}$ -cl(A) $-A = \{c\}$ does not contain any nonempty $\tau_{1,2}$ -closed set. But A is not $(1,2)^*-g'''$ -closed in X.

Theorem 4.10:

A set A is $(1,2)^*$ - g''' -closed if and only if $\tau_{1,2}$ -cl(A) – A contains no nonempty $(1,2)^*$ -gs-closed set.

Proof:

Necessity. Suppose that A is $(1,2)^*$ - g'''-closed. Let S be a $(1,2)^*$ -gs-closed subset of $\tau_{1,2}$ -cl(A) - A. Then $A \subseteq S^c$. Since A is $(1,2)^*$ - g'''-closed, we have $\tau_{1,2}$ -cl(A) $\subseteq S^c$. Consequently, $S \subseteq (\tau_{1,2}\text{-cl}(A))^c$. Hence, $S \subseteq \tau_{1,2}\text{-cl}(A) \cap (\tau_{1,2}\text{-cl}(A))^c = \phi$. Therefore S is empty.

Sufficiency. Suppose that $\tau_{1,2}\text{-cl}(A) - A$ contains no nonempty $(1,2)^*\text{-gs-closed}$ set. Let $A \subseteq G$ and G be both $\tau_{1,2}\text{-closed}$ and $(1,2)^*\text{-sg-open}$. If $\tau_{1,2}\text{-cl}(A) \not\subset G$, then $\tau_{1,2}\text{-cl}(A) \cap G^c \neq \emptyset$. Since $\tau_{1,2}\text{-cl}(A)$ is a $\tau_{1,2}\text{-closed}$ set and G^c is both $\tau_{1,2}\text{-open}$ and $(1,2)^*\text{-sg-closed}$ set, $\tau_{1,2}\text{-cl}(A) \cap G^c$ is a nonempty $(1,2)^*\text{-gs-closed}$ subset of $\tau_{1,2}\text{-cl}(A) - A$ (from Corollary 2.6). This is a contradiction. Therefore, $\tau_{1,2}\text{-cl}(A) \subseteq G$ and hence A is $(1,2)^*$ -g''' -closed.

Proposition 4.11:

If A is $(1,2)^*$ -g'''-closed in X and A \subseteq B $\subseteq \tau_{1,2}$ -cl(A), then B is $(1,2)^*$ -g'''-closed in X.

Proof:

Since B $\subseteq \tau_{1,2}$ -cl(A), we have $\tau_{1,2}$ -cl(B) $\subseteq \tau_{1,2}$ -cl(A). Then, $\tau_{1,2}$ -cl(B) $-B \subseteq \tau_{1,2}$ -cl(A) -A. Since $\tau_{1,2}$ -cl(A) -A has no nonempty $(1,2)^*$ -gs-closed subsets, neither does $\tau_{1,2}$ -cl(B) -B. By Theorem 4.10, B is $(1,2)^*$ -g''' -closed.

Proposition 4.12:

Let $A \subseteq Y \subseteq X$ and suppose that A is $(1,2)^*-g'''$ -closed in X. Then A is $(1,2)^*-g'''$ -closed relative to Y.

Proof:

Let $A \subseteq Y \cap G$, where G is $(1,2)^*$ -gs-open in X. Then $A \subseteq G$ and hence $\tau_{1,2}$ -cl $(A) \subseteq G$. This implies that $Y \cap \tau_{1,2}$ -cl $(A) \subseteq Y \cap G$. Thus A is $(1,2)^*$ -g'''-closed relative to Y.

Proposition 4.13:

If A is a $(1,2)^*$ -gs-open and $(1,2)^*$ -g'''-closed in X, then A is closed in X.

Proof:

Since A is $(1,2)^*$ -gs-open and $(1,2)^*$ -g'''-closed, $\tau_{1,2}$ -cl $(A) \subseteq A$ and hence A is $\tau_{1,2}$ -closed in X.

Recall that a bitopological space X is called (1,2)*-extremally disconnected if $\tau_{1,2}$ -cl(U) is $\tau_{1,2}$ -open for each $U \in \tau_{1,2}$.

Theorem 4.14:

Let X be $(1,2)^*$ -extremally disconnected and A a $(1,2)^*$ -semi-open subset of X. Then A is $(1,2)^*$ - g''' -closed if and only if it is $(1,2)^*$ -gs-closed.

Proof:

It follows from the fact that if X is $(1,2)^*$ -extremally disconnected and A is a $(1,2)^*$ -semi-open subset of X, then $(1,2)^*$ -scl(A) = $\tau_{1,2}$ -cl(A) (Lemma 0.3 [15]).

Theorem 4.15:

Let A be a $(1,2)^*$ -locally closed set of X. Then A is $\tau_{1,2}$ -closed if and only if A is $(1,2)^*$ - g'''-closed.

Proof:

(i) \Rightarrow (ii). It is fact that every τ_1 2-closed set is $(1,2)^*$ - g'''-closed.

(ii) \Rightarrow (i). By Proposition 5.1.3.3 of Bourbaki [6], $A \cup (X - \tau_{1,2}\text{-cl}(A))$ is $\tau_{1,2}\text{-open}$ in X, since A is $(1,2)^*$ -locally closed. Now $A \cup (X - \tau_{1,2}\text{-cl}(A))$ is $(1,2)^*$ -gs-open set of X such that $A \subseteq A \cup (X - \tau_{1,2}\text{-cl}(A))$. Since A is $(1,2)^*$ -g'''-closed, then $\tau_{1,2}$ -cl(A) $\subseteq A \cup (X - \tau_{1,2}\text{-cl}(A))$. Thus, we have $\tau_{1,2}\text{-cl}(A) \subseteq A$ and hence A is a $\tau_{1,2}$ -closed.

Proposition 4.16:

For each $x \in X$, either $\{x\}$ is $(1,2)^*$ -gs-closed or $\{x\}^c$ is $(1,2)^*$ -g'''-closed in X.

Proof:

Suppose that $\{x\}$ is not $(1,2)^*$ -gs-closed in X. Then $\{x\}^c$ is not $(1,2)^*$ -gs-open and the only $(1,2)^*$ -gs-open set containing $\{x\}^c$ is the space X itself. Therefore $\tau_{1,2}$ -cl $(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $(1,2)^*$ -g'''-closed in X.

Theorem 4.17:

Let A be a $(1,2)^*$ - g'''-closed set of a bitopological space X. Then,

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

- (i) $(1,2)*-\sin(A)$ is (1,2)*-g'''-closed.
- (ii) If A is regular $(1,2)^*$ -open, then $(1,2)^*$ -pint(A) and $(1,2)^*$ -scl(A) are also $(1,2)^*$ -g'''-closed sets.
- (iii) If A is regular $(1,2)^*$ -closed, then $(1,2)^*$ -pcl(A) is also $(1,2)^*$ g'''-closed.

Proof:

- (i) Since $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) is a closed set in X, by Corollary 4.6, (1,2)*-sint(A) = A $\cap \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) is (1,2)*-g'''-closed in X.
- (ii) Since A is regular (1,2)*-open in X, $A = \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(A))$. Then (1,2)*-scl(A) = $A \cup \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(A))$ = A. Thus, (1,2)*-scl(A) is (1,2)*-g'''-closed in X. Since (1,2)*-pint(A) = $A \cap \tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(A))$ = A, (1,2)*-pint(A) is (1,2)*-g'''-closed.
- (iii) Since A is regular (1,2)*-closed in X, $A = \tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(A))$. Then (1,2)*-pcl(A) = $A \cup \tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(A)) = A$. Thus, (1,2)*-pcl(A) is (1,2)*-g''' -closed in X.

The converses of the statements in the Theorem 4.17 are not true as we see in the following examples.

Example 4.18:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, \{b, c\}, X\}$. Then $(1,2)^*$ -G''' $C(X) = \{\phi, \{a\}, \{a, b\}, X\}$. Then the set $A = \{b\}$ is not a $(1,2)^*$ -g'''-closed set. However $(1,2)^*$ -sint $(A) = \phi$ is a $(1,2)^*$ -g'''-closed.

Example 4.19:

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $(1,2)^*-G'''$ $C(X) = \{\phi, \{c\}, \{b, c\}, X\}$. Then the set $A = \{c\}$ is not regular $(1,2)^*$ -open. However A is $(1,2)^*-g'''$ -closed and $(1,2)^*$ -scl $(A) = \{c\}$ is a $(1,2)^*-g'''$ -closed and $(1,2)^*$ -pint $(A) = \phi$ is also $(1,2)^*-g'''$ -closed.

Example 4.20:

In Example 4.19, the set $A = \{c\}$ is not regular $(1,2)^*$ -closed. However A is a $(1,2)^*$ - g'''-closed and $(1,2)^*$ -pcl(A) = $\{c\}$ is $(1,2)^*$ - g'''-closed.

References:

- 1. Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ, 12(1983), 77-90.
- 2. Aho, T. and Nieminen, T.: Spaces in which subsets are semi-open, Ricerche Mat., 43(1994), 45-59.
- 3. Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- 4. Arya, S. P. and Nour, T.: Characterization of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- 5. Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- 6. Bourbaki, N.: General topology, Part I, Addison-Wesley, Reading, Mass., 1966.
- 7. Cameron, D. E.: Topology atlas., http://gozips.uakron.deu/.
- 8. Cao, J., Ganster, M. and Reilly, I.: Submaximality, extremal disconnectedness and generalized closed sets, Houston J. Math., 24(1998), 681-688.
- 9. Cao, J., Ganster, M. and Reilly, I.: On sg-closed sets and g α -closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 20(1999), 1-5.
- 10. Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22(1971), 99-112.
- 11. R, Bhuvaneswari, K. and Maki, H.: Weak forms of gp-closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ and digital plane, Mem. Fac.Sci. Kochi Univ. Ser. A. Math., 25(2004), 37-54.
- 12. Devi, R, Balachandran, K. and Maki, H.: Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math., 26(3) (1995), 271-284.
- 13. Dontchev, J.: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16(1995), 35-48.
- 14. Dontchev, J. and Ganster, M.: On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 15-31.
- 15. Ganster, M., Noiri, T. and Reilly, I. L.: Weak and strong forms of θ -irresolute function, J. Inst. Math. Comp. Sci. (Math. Ser.) 1 (1) (1988), 19-29.
- Ganster, M. and Reilly, I. L.: Locally closed sets and LC-continuous functions, Internat J. Math. Sci., 12(3)(1989), 417-424
- 17. Kong, T., Kopperman, R. and Meyer, P.: A topological approach to digital topology, Amer. Math. Monthly, 98(1991), 901-917.
- 18. Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- 19. Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 20. Levine, N.: Some remarks on the closure operator in topological spaces, Amer. Math. Monthly. 70 (5) (1963), 553.
- 21. Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- 22. Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N.: On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.

International Journal of Current Research and Modern Education Impact Factor 6.725, Special Issue, July - 2017

- 23. Nasef, A. A. and Maghrabi, A. I.: Between semi-closed and GS-closed sets, JIUSCI, 2(2009),78-87.
- 24. Navalagi, G. B.: Properties of gs-closed sets and sg-closed sets in topology, Atlas (internet).
- 25. Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- 26. Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19(1998), 13-20.
- 27. Pious Missier, S., Ravi, O., Jeyashri, S. and Herin Wise Bell, P.: On weakly g'''-closed sets in topology (submitted).
- 28. Rajamani, M., and Viswanathan, K.: On αgs-closed sets in topological spaces, Acta Ciencia Indica, XXXM (3)(2004), 21-25.
- 29. Ravi, O., Antony Rex Rodrigo, J., Jeyashri S. and Leelavathi, s.: $g_{\alpha}^{"'}$ -closed sets in topology (submitted).
- 30. Ravi, O., Ganesan, S., and Chandrasekar, S.: Almost αgs-closed functions and separation axioms, Bull. Math. Analysis and Appl. 3(1)(2011), 165-177.
- 31. Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- 32. Stone, M.: Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc, 41(1937), 374-481.
- 33. Veera Kumar, M. K. R. S.: \hat{g} -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.