International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, January - 2017

International Conference on Smart Approaches in Computer Science Research Arena
On 5th January 2017 Organized By

Department of Computer Science, Sri Sarada College for Women (Autonomous), Salem, Tamilnadu

G₈-COMPACTNESS ON FUZZY CHAOTIC STRUCTURE SPACES Dr. M. K. Uma* & R. Malathi**

Department of Mathematics, Sri Sarada College for Women (Autonomous), Salem, Tamilnadu

Cite This Article: Dr. M. K. Uma & R. Malathi, " G_{δ} -Compactness on Fuzzy Chaotic Structure Spaces", International Journal of Current Research and Modern Education, Special Issue, January, Page Number 70-73, 2017.

Abstract:

The purpose of this paper is to introduce the concepts of fuzzy orbit open set, fuzzy periodic open set, fuzzy chaotic set, fuzzy chaotic structure space, fuzzy chaotic G_{δ} -compact spaces, fuzzy chaotic G_{δ} -Lindelöf spaces with some interesting properties are established.

Key Words: Fuzzy Orbit Open Set, Fuzzy Periodic Open Set, Fuzzy Chaotic Set, Fuzzy Chaotic Space, Fuzzy Chaotic Structure Space & Fuzzy Chaotic G_{δ} -Lindelöf spaces.

1. Introduction:

The concept of fuzzy sets was introduced by Zadeh [6] in 1965. Since then fuzzy sets have applications in many fields such as information [4] and control [5]. Subsequently, Chang [2] defined the notion of fuzzy topological space in 1980. The concept of chaotic function in general metric space was introduced by R. L. Devaney [3]. It has many applications in traffic forecasting, animation, computer graphics, medical field, image processing, etc. In 1991, Bin Shahna [1] defined fuzzy compact spaces. In this paper, fuzzy chaos space and fuzzy chaotic structure space are introduced. The concepts of fuzzy orbit open set, fuzzy periodic open set, fuzzy chaotic set are also introduced. The concepts of fuzzy chaotic G_{δ} -compact spaces, fuzzy chaotic G_{δ} -normal spaces are introduced. Some interesting properties of these spaces are also discussed.

2. Preliminaries:

Definition 2.1 [6] A fuzzy set in X is a function with domain X and values in I, that is an element of I^X.

Definition 2.5 [2] Let $T \subset I^X$ satisfying the following conditions:

- (i) $0, 1 \in T$,
- (ii) if μ_1 , $\mu_2 \in T$, then $\mu_1 \wedge \mu_2 \in T$,
- (iii) if $\{ \mu_i : j \in J \} \subset T$, then $V_{i \in J} \mu_i \in T$.

T is called a fuzzy topology on X and (X, T) a fuzzy topological space (or f. t. s.). The elements of T are called fuzzy open sets. A fuzzy setv is called fuzzy closed set if $1 - v \in T$. We denote T^c the collection of all fuzzy closed sets in this fuzzy topological space.

Definition 2.7 [5] Let (X, T) be a fuzzy topological space and $\lambda \in I^X$ is called fuzzydense in X if there exists no fuzzy closed set μ in (X, T) such that $\lambda < \mu < 1$. That $iscl(\lambda) = 1$.

Definition 2.8 [2] Let $f: (X, T) \to (Y, U)$ be a mapping from a fuzzy topological space X to fuzzy topological space Y. f is called fuzzy continuous if the inverse image of every fuzzy closed set in (Y, S) is fuzzy closed in (X, T).

Definition 2.12 [3] Orbit of a point x in X under the mapping f is $O_f(x) = \{x, f(x), f^2(x), \dots\}$.

Definition 2.13 [3] x in X is called a periodic point of f if $f^n(x) = x$, for some $n \in \mathbb{Z}_+$. Smallest of these n is called period of x.

Definition 2.14 [3] f is sensitive if for each $\delta > 0$ there exists

- (i) $\varepsilon > 0$,
- (ii) $y \in X$,
- (iii) $n \in \mathbb{Z}_+$ such that $d(x, y) < \delta$ and $d(f^n(x), f^n(y)) > \varepsilon$.

Notation 2.1 Let $F \subseteq X$ and $S(F) = \{f | f \text{ is sensitive on } F\}$.

Definition 2.15 [3] Let (X, τ) be a topological space and $F \in K(X)$. Let $f : F \to F$ be continuous. Then f is chaotic on F if

- (i) $O_f(x) = F$, for some $x \in F$
- (ii) periodic points of f are dense in F and
- (iii) $f \in S(F)$.

Notation 2.2 (i) $C(F) = \{f : F \to F \setminus f \text{ is chaotic on } F\},$

(ii) $CH(X) = \{f : K(X) - C(F) \neq \phi\}$, where K(X) is a collection of all nonzero fuzzy compact subsets of X.

3. Fuzzy Chaotic G_{δ} -Compact Spaces:

Definition 3.1 Let X be a nonempty set and let $f: X \to X$ be any mapping. Let λ be any fuzzy set in X. The fuzzy orbit $O_f(\lambda)$ of λ under the mapping f is defined as $O_f(\lambda) = {\lambda, f(\lambda), f^2(\lambda),...}$.

Definition 3.2 Let X be a nonempty set and let $f: X \to X$ be any mapping. The fuzzy orbit set of λ under the mapping f is defined as $FO_f(\lambda) = {\lambda \land f(\lambda) \land f^2(\lambda) \land ...}$ the intersection of all members of $O_f(\lambda)$.

Example 3.1 Let $X = \{a, b, c\}$. Define a fuzzy orbit set $\lambda: X \to [0,1]$ as follows λ (a) = 0.5, λ (b) = 0.6, λ (c) = 0.7. Define $f: X \to X$ as f(a) = b, f(b) = c, f(c) = a. The fuzzy orbit set of under the mapping f(a) = a is defined as f(a) = b. For f(a) = a is defined as f(a) = a. The fuzzy orbit set of f(a) = a is defined as f(a) = a. The fuzzy orbit set of f(a) = a is defined as f(a) = a. The fuzzy orbit set of f(a) = a is defined as f(a) = a. The fuzzy orbit set of f(a) = a is defined as f(a) = a. The fuzzy orbit set of f(a) = a is defined as f(a) = a. The fuzzy orbit set of f(a) = a is defined as f(a) = a.

Definition 3.3 Let (X, T) be a fuzzy topological space. Let $f: X \to X$ be any mapping. The fuzzy orbit set under the mapping f which is in fuzzy topology f is called fuzzy orbit open set under the mapping f. Its complement is called a fuzzy orbit closed set under the mapping f.

International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, January - 2017

International Conference on Smart Approaches in Computer Science Research Arena
On 5th January 2017 Organized By

Department of Computer Science, Sri Sarada College for Women (Autonomous), Salem, Tamilnadu

Example 3.2 Let $X = \{a, b, c\}$. Define $T = \{0, 1, \lambda, Y\}$ where $\lambda, Y: X \rightarrow [0,1]$ are defined as $\lambda(a) = 0.3$, $\lambda(b) = 0.3$, $\lambda(c) = 0.1$, Y(a) = 0.3, Y(b) = 0, Y(c) = 0. Define $f: X \rightarrow X$ as f(a) = a, f(b) = a, f(c) = a. The fuzzy orbit set of λ under the mapping f is defined as $FO_f(\lambda) = \lambda \land f(\lambda) \land f^2(\lambda) \land \dots$. $FO_f(\lambda) = Y$. Therefore Y is a fuzzy orbit open set under the mapping f.

Definition 3.4 Let X be a nonempty set and let $f: X \to X$ be any mapping. Then a fuzzy set of X is called fuzzy periodic set with respect to f if $f^n(Y) = Y$, for some $n \in Z+$. smallest of these n is called fuzzy periodic of X.

Definition 3.5 Let (X, T) be a fuzzy topological space. Let $f: X \to X$ be any mapping. The fuzzy periodic set with respect to f which is in fuzzy topology T is called fuzzy periodic open set with respect to f. Its complement is called a fuzzy periodic closed set with respect to f.

Notation 3.1 $P = \Lambda \{ \text{fuzzy periodic open sets with respect to } f \}.$

Definition 3.6 Let (X, T) be a fuzzy topological space and $\lambda \in KF(X)$ (Where KF(X) is a collection of all nonempty fuzzy compact subsets of X). Let $f: X \to X$ be any mapping. Then f is fuzzy chaotic with respect to λ if

- (i) $\operatorname{cl} \operatorname{FO}_{\mathrm{f}}(\lambda) = 1$,
- (ii) P is fuzzy dense.

Example 3.3 Let $X = \{a, b, c\}$. Define $T = \{0, 1, \mu_1, \mu_2, \mu_3, \mu_4\}$ where $\mu_1, \mu_2, \mu_3, \mu_4$: $X \rightarrow [0,1]$ are defined as μ_1 (a) =0.4, μ_1 (b) = 0.8, μ_1 (c) = 0.4, μ_2 (a) = 0.4, μ_2 (b) = 0.8, μ_2 (c) = 0.5, μ_3 (a) = 0.8, μ_3 (b) = 0.8, μ_3 (c) = 0.6, μ_4 (a) = 0.9, μ_4 (b) = 0.8, μ_4 (c) = 0.9. Let λ: $X \rightarrow I$ be defined as λ (a) = 0.3, (b) = 0.6, λ (c) = 0.3. Define $f: X \rightarrow X$ as f(a) = b, f(b) = c, f(c) = a. The fuzzy orbit set of λ under the mapping f is defined as $FO_f(\lambda) = \lambda \land f(\lambda) \land f^2(\lambda) \land \dots$

 $FO_f(\lambda)$ (a) = 0.3, $FO_f(\lambda)$ (b) = 0.3, $FO_f(\lambda)$ (c) = 0.3. Therefore cl $FO_f(\lambda)$ = 1. Here P(a) = 0.4, P(b) = 0.8, P(c) = 0.4 and cl P(c) is fuzzy dense. Hence P(c) is fuzzy chaotic with respect to P(c).

Notation 3.2 (i) FC (λ) = {f: X \rightarrow X / f is fuzzy chaotic with respect to λ }.

(ii) $FCH(\lambda) = \{\lambda \in KF(X) / FC(\lambda) \neq \phi\}.$

Definition 3.7 A fuzzy topological space (X, T) is called a fuzzy chaos space if FCH $(\lambda) \neq \phi$. If (X, T) is fuzzy chaos space then the element of the FCH(X) are called chaotic sets in X.

Definition 3.8 Let (X, T) be a fuzzy chaos space. Let C be the collection of fuzzy chaotic sets in X satisfying the following conditions:

- (i) $0, 1 \in C$,
- (ii) if μ_1 , $\mu_2 \in \mathbb{C}$, then $\mu_1 \wedge \mu_2 \in \mathbb{C}$,
- (iii) if $\{ \mu_i : j \in J \} \subset \mathfrak{C}$, then $V_{i \in J} \mu_i \in C$

Then C is called the fuzzy chaotic structure in X. The triple (X, T, C) is called fuzzy chaotic structure space. The elements of $\mathfrak C$ are called fuzzy open chaotic sets. The complement of fuzzy open chaotic set is called fuzzy closed chaotic set.

Definition 3.9 Let (X, T, C) be a fuzzy chaotic structure space and let λ be any fuzzy open chaotic set in (X, T, C). We define

- (i) CInt $(\lambda) = \{ \mu : \mu \le \lambda, \mu \text{ is a fuzzy open chaotic set} \}$ is called fuzzy chaotic interior of λ .
- (ii) $CCl(\lambda) = \{\mu : \mu \ge \lambda, \mu \text{ is a fuzzy closed chaotic set} \}$ is called fuzzy chaotic closure of λ .

Definition 3.10 Let (X, T, C) be a fuzzy chaotic structure space and let λ be any fuzzy open chaotic set in X. λ is called a fuzzy chaotic G_{δ} -set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where λ_i are fuzzy open chaotic sets, for i = 1 to ∞ .

Definition 3.11 Let (X, T, C) be a fuzzy chaotic structure space and let λ be any fuzzy open chaotic set in X. λ is called a fuzzy chaotic F_{σ} -set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where λ_i are fuzzy open chaotic sets, for i = 1 to ∞ .

Definition 3.12 Let λ be any fuzzy set in the fuzzy chaotic structure space (X, T, C). Then we define

 $CCl_{\sigma}(\lambda) = \text{ fuzzy chaotic } \sigma\text{-closure of } \lambda.$

= the smallest fuzzy chaotic F_{σ} -set containing λ .

 $CInt_{\sigma}(\lambda)$ = fuzzy chaotic σ -interior of λ .

= the greatest fuzzy chaotic G_{δ} -set contained in λ .

Definition 3.13 Let (X, T, C_1) and (Y, S, C_2) be fuzzy chaotic structure spaces. Let $f: (X, T, C_1) \to (Y, S, C_2)$ be a function f is called M-fuzzy chaotic G_{δ} -continuous if the inverse image of every fuzzy chaotic G_{δ} -set in (Y, S, C_2) is fuzzy chaotic G_{δ} in (X, T, C_1) .

Definition 3.14 Let (X, T, C_1) and (Y, S, C_2) be fuzzy chaotic structure spaces. Let $f: (X, T, C_1) \to (Y, S, C_2)$ be a function f is called M-fuzzy chaotic F_{σ} -map if for every fuzzy chaotic F_{σ} -set λ in (X, T, C_1) , $f(\lambda)$ is fuzzy chaotic F_{σ} -set λ in (Y, S, C_2) .

Definition 3.15 A fuzzy chaotic structure space (X, T, C) is called fuzzy chaotic G_{δ} -space if every fuzzy chaotic G_{δ} -set of (X, T, C) is fuzzy open chaotic.

Remark 3.1 Let (X, T, C_1) and (Y, S, C_2) be fuzzy chaotic structure spaces.f: $(X, T, C_1) \rightarrow (Y, S, C_2)$ is M-fuzzy chaotic G_{δ} -continuous \Leftrightarrow for every fuzzy chaotic F_{σ} -set λ of (Y, S, C_2) , $f^{-1}(\lambda)$ is fuzzy chaotic F_{σ} set in (X, T, C_1) .

Proposition 3.1For a fuzzy open chaotic set λof afuzzy chaotic structure space (X, T, C) the following hold.

- $(a) \hspace{1cm} 1 CCl_{\sigma} \, (\lambda) \hspace{1cm} = \hspace{1cm} CInt_{\sigma} (1 \lambda).$
- (b) $1 \operatorname{CInt}_{\sigma}(\lambda) = \operatorname{CCl}_{\sigma}(1 \lambda).$

Proposition 3.2 Let (X, T, C_1) and (Y, S, C_2) be a fuzzy chaotic structure spaces. Let $f: (X, T, C_1) \to (Y, S, C_2)$ be fuzzy open chaotic and injective. Then f is fuzzy chaotic G_δ -map.

Proof: Suppose λ is fuzzy chaotic G_{δ} in (X, T, C_1) . Then $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each λ_i ($i \in I$) is fuzzy open chaotic in (X, T, C). Now by hypothesis on f, we have $f(\lambda) = f(\bigwedge_{i=1}^{\infty} \lambda_i) = \bigwedge_{i=1}^{\infty} f(\lambda_i)$ which implies that $f(\lambda)$ is fuzzy chaotic G_{δ} .

International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, January - 2017

International Conference on Smart Approaches in Computer Science Research Arena
On 5th January 2017 Organized By

Department of Computer Science, Sri Sarada College for Women (Autonomous), Salem, Tamilnadu

Proposition 3.3 Let (X, T, C_1) and (Y, S, C_2) be fuzzy chaotic structure spaces. Let $f: (X, T, C_1) \to (Y, S, C_2)$ befuzzy continuous and injective. Then f is M-fuzzy chaotic G_{δ} - continuous.

Proposition 3.4Let (X, T, C_1) , (Y, S, C_2) and (Z, R, C_3) be any three fuzzy chaotic structure spaces. Suppose $f:(X, T, C_1) \rightarrow (Y, S, C_2)$ and $g:(Y, S, C_2) \rightarrow (Z, R, C_3)$ are both M-fuzzy chaotic G_{δ} -continuous. Then $g \circ f:(X, T, C_1) \rightarrow (Z, R, C_3)$ is M-fuzzy chaotic G_{δ} -continuous.

Notation: Let (X, T, C_1) be a fuzzy chaotic structure space P_{2X} denotes the projection of $X \times Z$ onto Z, where (Z, R, C_3) is any fuzzy chaotic structure space.

Definition 3.16A fuzzy chaotic structure space(X, T, C_1) is said to be fuzzy chaotic G_8 -compact if the projection $p_{2X}: X \times Z \to Z$ is fuzzy chaotic F_{σ} for any fuzzy chaotic structure space(Z, R, C_3).

Proposition 3.5A M-fuzzy chaotic G_{δ} -continuous image of a fuzzy chaotic G_{δ} -compact space is fuzzy chaotic G_{δ} -compact.

Definition 3.17Let (X, T, C₁) and (Y, S, C₂) be any two fuzzy chaotic structure spaces. A M-fuzzy chaotic G_δ -continuous map $f:(X, T, C_1) \rightarrow (Y, S, C_2)$ is fuzzy chaotic G_δ -perfect iff $f \times I_Z$ is fuzzy chaotic F_σ for every fuzzy chaotic structure space (Z, R,C₃).

Proposition 3.6If $f:(X, T, C_1) \rightarrow (Y, S, C_2)$ is fuzzy chaotic G_{δ} -perfect mapping of a fuzzy chaotic structure space (X, T, C_1) onto a fuzzy chaotic G_{δ} -compact space (Y, S, C_2) , then (X, T, C_1) is fuzzy chaotic G_{δ} -compact.

Proof: Since f is fuzzy chaotic G_δ -perfect, $f \times I_Z : X \times Z \to Y \times Z$ is fuzzy chaotic F_σ for any fuzzy chaotic structure space (Z, R, C_3) . For (X, T, C_1) to be fuzzy chaotic G_δ -compact we show that $p_{2X} : X \times Z \to Z$ is upper fuzzy chaotic F_σ . Noting that p_{2X} is the composition of two fuzzy chaotic F_σ -mappings $f \times I_Z$ and $p_{2Y} : Y \times Z \to Z$ the result follows.

Definition 3.18Let (X, T, C_1) and (Y, S, C_2) be any two fuzzy chaotic structure spaces. (X, T, C_1) and (Y, S, C_2) are said to be fuzzy chaotic G_{δ} -homeomorphiciff there exists $f:(X, T, C_1) \rightarrow (Y, S, C_2)$ such that f is one-to-one, onto, M-fuzzy chaotic G_{δ} -continuous and fuzzy chaotic G_{δ} . Such an f is called M-fuzzy chaotic G_{δ} -homeomorphism.

Proposition 3.7Let (X, T, C_1) and (Y, S, C_2) be any two fuzzy chaotic structure spaces. If $f:(X, T, C_1) \rightarrow (Y, S, C_2)$ is fuzzy chaotic G_{δ} -homeomorphism, then $f(CCl_{\sigma}(\lambda)) = CCl_{\sigma}(f(\lambda))$.

Proposition 3.8Let (X, T, C_1) be afuzzy chaotic structure space and (Y, S, C_2) be a fuzzy chaotic G_δ -compact space. Then the projection $p: X \times Y \to X$ is fuzzy chaotic G_δ -perfect mapping.

Proof: We show that $p \times I_Z : (X \times Y) \times Z \to X \times Z$ is a fuzzy chaotic F_{σ} -mapping for any fuzzy chaotic structure space (Z, R, C_3) . Since (Y, S, C_2) is fuzzy chaotic G_{δ} -compact, $p_{2Y} : Y \times (X \times Z) \to X \times Z$ is fuzzy chaotic F_{σ} . That is, $p \times I_Z$ is fuzzy chaotic F_{σ} .

 $\text{follows by noting that it is the composition } p_{\underline{YY}} \circ h, \text{ where } h : (X \times Y) \times Z \to Y \times (X \times Z) \text{ is a fuzzy chaotic } G_{\delta} \text{-homeomorphism}.$

Proposition 3.9 The product of two fuzzy chaotic G_{δ} -compact spaces is fuzzy chaotic G_{δ} -compact.

Proof : Let (X, T, C_1) and (Y, S, C_2) be two fuzzy chaotic G_δ -compact spaces. Then $p_{2X}: X \times (Y \times Z) \to (Y \times Z)$ and $p_{2Y}: (Y \times Z) \to Z$ are fuzzy chaotic F_σ -mappings for any fuzzy chaotic structure space(Z, R, C_3). We show that $p_{2(X \times Y)}: (X \times Y) \times Z \to Z$ is fuzzy chaotic F_σ . Since $p_{2(X \times Y)} = p_{2Y} \circ p_{2X}[X \times (Y \times Z)]$ and $p_{2X}: (X \times Y) \times Z \to Z$ are fuzzy homeomorphic, being a composition of two fuzzy chaotic $p_{2X}: (X \times Y) \to Z$ and hence $p_{2X}: (X \times Y) \to Z$ are fuzzy chaotic $p_{2X}: (X \times Y) \to Z$ and hence $p_{2X}: (X \times Y) \to Z$ are fuzzy chaotic $p_{2X}:$

Definition 3.19 AM-fuzzy chaotic G_{δ} -continuous mapping $f:(X,T,C_1)\to (Y,S,C_2)$ of afuzzy chaotic structure space (X,T,C_1) into afuzzy chaotic structure space (Y,S,C_2) is called a fuzzy chaotic G_{δ} -quasi perfect mapping if $f\times I_Z:X\times Z\to Y\times Z$ is fuzzy chaotic F_{σ} for any fuzzy chaotic G_{δ} -space (Z,R,C_3) .

Proposition 3.10 Let (X_1, T_1, C_1) , (X_2, T_2, C_2) and (X_3, T_3, C_3) be any three fuzzy chaotic structure spaces. The composition $g \circ f : (X_1, T_1, C_1) \to (X_3, T_3, C_3)$ of fuzzy chaotic G_{δ} -quasi perfect mappings $f : (X_1, T_1, C_1) \to (X_2, T_2, C_2)$ and $g : (X_2, T_2, C_2) \to (X_3, T_3, C_3)$ is fuzzy chaotic G_{δ} -quasi perfect.

Proof: Let (Z, R, C_3) be a fuzzy chaotic G_δ -space. Then $(g \circ f) \times I_Z : X_1 \times Z \to X_3 \times Z$ is fuzzy chaotic F_σ follows from the identity $(g \circ f) \times I_Z = (g \times I_Z) \circ (f \times I_Z)$ by noting that f and g are fuzzy chaotic G_δ -quasi perfect mappings.

Proposition 3.11 Let (X_1, T_1, C_1) , (X_2, T_2, C_2) and (X_3, T_3, C_3) be any three fuzzy chaotic structure spaces. Let the mappings $f: (X_1, T_1, C_1) \to (X_2, T_2, C_2)$ and $g: (X_2, T_2, C_2) \to (X_3, T_3, C_3)$ be M-fuzzy chaotic G_δ -continuous mappings. Then

- (a) if g of is fuzzy chaotic G_{δ} -quasi perfect and f is surjective, then g is fuzzy chaotic G_{δ} -quasi perfect,
- (b) if $g \circ f$ is fuzzy chaotic G_{δ} -quasi perfect and g is injective, then f is fuzzy chaotic G_{δ} -quasi perfect.

Proof: (a) We show that $g \times I_Z : X_2 \times Z \xrightarrow{} X_3 \times Z$ is fuzzy chaotic F_{σ} for any fuzzy chaotic G_{δ} -space (Z, R, C_3) . Let μ be any fuzzy chaotic F_{σ} -set of $X_2 \times Z$. Then $(f \times I_Z)^{-1}(\mu)$ is a fuzzy chaotic F_{σ} -set of $X_1 \times Z$. Since $(g \circ f) \times I_Z$ is fuzzy chaotic F_{σ} and $((g \circ f) \times I_Z)((f \times I_Z)^{-1}(\mu)) = (g \times I_Z)(\mu)$, it follows that $(g \times I_Z)(\mu)$ is fuzzy chaotic F_{σ} -set of $X_3 \times Z$.

(b) We show that $f \times I_Z : X_1 \times Z \to X_2 \times Z$ is fuzzy chaotic F_{σ} for any fuzzy chaotic G_{δ} -space (Z, R, C_3) . Let μ be any fuzzy chaotic F_{σ} -set of $X_1 \times Z$. Then $((g \circ f) \times I_Z)(\mu)$ is a fuzzy chaotic F_{σ} -set of $X_3 \times Z$. Since $g \times I_Z$ is M-fuzzy chaotic G_{δ} -continuous and $(g \times I_Z)^{-1}$ $(((g \circ f) \times I_Z)(\mu)) = (f \times I_Z)(\mu)$, it follows that $(f \times I_Z)(\mu)$ is fuzzy chaotic F_{σ} -set of $X_2 \times Z$.

Definition 3.20 A fuzzy chaotic structure space (X, T, C_1) is called fuzzy chaotic G_δ -Lindelöf if the projection $p_{2X}: X \times Z \to Z$ is a fuzzy chaotic F_σ -mapping for any fuzzy chaotic G_δ -space (Z, R, C_3) .

International Journal of Current Research and Modern Education

Impact Factor 6.725, Special Issue, January - 2017

International Conference on Smart Approaches in Computer Science Research Arena
On 5th January 2017 Organized By

Department of Computer Science, Sri Sarada College for Women (Autonomous), Salem, Tamilnadu

Proposition 3.12 A M-fuzzy chaotic G_δ -continuous image of a fuzzy chaotic G_δ -Lindelöf space is fuzzy chaotic G_δ -Lindelöf. **Proof :** Let f be a M-fuzzy chaotic G_δ -continuous mapping from a fuzzy chaotic G_δ -Lindelöf space (X, T, C_1) onto a fuzzy chaotic structure space (Y, S, C_2) and I_Z be the identity mapping onto a fuzzy chaotic G_δ -space (Z, R, C_3) . Then $f \times I_Z : X \times Z \to Y \times Z$ is fuzzy chaotic G_δ -continuous. Let μ be any fuzzy chaotic F_σ -set of $Y \times Z$. Then $(f \times I_Z)^{-1}(\mu)$ is fuzzy chaotic F_σ -set of $X \times Z$. Since $P_{2X} : X \times Z \to Z$ is fuzzy chaotic P_σ -set of $P_{2X} : X \times Z \to Z$ is fuzzy chaotic P_σ -set of $P_{2X} : X \times Z \to Z$ is fuzzy chaotic P_σ -set of P_σ -se

Proposition 3.13 If $f: (X, T, C_1) \rightarrow (Y, S, C_2)$ is a fuzzy chaotic G_{δ} -quasi perfect mapping of a fuzzy chaotic structure space (X, T, C_1) onto a fuzzy chaotic G_{δ} -Lindelöf space (Y, S, C_2) , then (X, T, C_1) is fuzzy chaotic G_{δ} -Lindelöf.

Proof: Since f is fuzzy chaotic G_{δ} -quasi perfect, $f \times I_Z : X \times Z \to Y \times Z$ is fuzzy chaotic F_{σ} for any fuzzy chaotic G_{δ} -space (Z, R, C_3). For (X, T, C_1) to be fuzzy chaotic G_{δ} -Lindelöf, we show that $p_{2X} : X \times Z \to Z$ is fuzzy chaotic F_{σ} . Noting that p_{2X} is the composition of two fuzzy chaotic F_{σ} -mappings $f \times I_Z$ and $p_{2X} : Y \times Z \to Z$, the result follows.

Proposition 3.14 Let (X, T, C_1) be a fuzzy chaotic G_{δ} -space and (Y, S, C_2) be a fuzzy chaotic G_{δ} -Lindelöf space. Then the projection $p: X \times Z \to X$ is an fuzzy chaotic G_{δ} -quasi perfect mapping.

Proof: We show that $p \times I_Z$: $(X \times Y) \times Z \to X \times Z$ is a fuzzy chaotic G_δ -quasi perfect mapping for a fuzzy chaotic G_δ -space (Z, R, C_3) . Since (Y, S, C_2) is fuzzy chaotic G_δ -Lindelöf, $p_{2Y}: Y \times (X \times Z) \to (X \times Z)$ is fuzzy chaotic F_σ -mapping. That is, $p \times I_Z$ is fuzzy chaotic F_σ follows by noting that it is the composition p_{2Y} h, where $h: (X \times Y) \times Z \to Y \times (X \times Z)$ is a fuzzy chaotic G_δ -homeomorphism.

Proposition 3.15 Let (X, T, C_1) be a fuzzy chaotic G_δ -compact space. If (Y, S, C_2) is a fuzzy chaotic G_δ -Lindelöf space, then $X \times Y$ is a fuzzy chaotic G_δ -Lindelöf.

Proof: Let (Z, R, C_3) be a fuzzy chaotic G_δ -space. Since (X, T, C_1) is fuzzy chaotic G_δ -compact and (Y, S, C_2) is fuzzy chaotic G_δ -Lindelöf, $p_{2X}: X \times (Y \times Z) \to (Y \times Z)$ and $p_{2Y}: Y \times Z \to Z$ are fuzzy chaotic F_σ -mappings. We show that $p_{2(X \times Y)}: (X \times Y) \times Z \to Z$ is fuzzy chaotic F_σ . Since $p_{2(X \times Y)} = p_{2Y} p_{2X} [X \times (Y \times Z)]$ and $p_{2X}: Y \times Z \to Z$ are fuzzy homeomorphic, being a composition of two fuzzy chaotic F_σ -mappings, is fuzzy chaotic F_σ and hence $p_{2X}: Y \to Z$ are fuzzy chaotic p_{2X

References:

- 1. Bin Shahna.A.S.: On fuzzy compactness and fuzzy Lindelöfness, Bull. Cal. Math. Soc., 83 (1991), 146-150.
- 2. Chang, C.L: Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190.
- 3. Devaney, R. L: Introduction to chaotic dynamical systems, Addison-wesley.
- 4. Smets, M: The degree of belief in a fuzzy event, Inform. Sci., 25 (1981), 1-19.
- 5. Sugeno, M: An introductory survey of fuzzy control, Inform. Sci., 36 (1985), 59-83.
- 6. Zadeh.L.A.: Fuzzy sets, Information and Control, 8(1965), 338-353.