(www.rdmodernresearch.com) Volume 2, Issue 2, 2017



# SPLITTING OF RATIONAL PRIMES IN THE RING OF ALGEBRAIC INTEGERS

## Rahul Arora

Chhawani Mohalla, Near Pipal Chowk, Ludhiana, Punjab

**Cite This Article:** Rahul Arora, "Splitting of Rational Primes in the Ring of Algebraic Integers", International Journal of Current Research and Modern Education, Volume 2, Issue 2, Page Number 28-29, 2017.

**Copy Right:** © IJCRME, 2017 (All Rights Reserved). This is an Open Access Article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## **Abstract:**

We know that the primes in Z (hereafter referred as rational primes) are irreducible in Z i.e they don't have proper factorization. If R is any factorization domain such that Z is properly contained in R then are these rational primes also irreducible in R? The answer to this question in general is No. For example, 2 is prime in Z but 2 is not prime in Z[i] as we can write 2 as: 2 = (1 + i)(1 - i) where both 1 + i & 1 - i are irreducible (rather non units) in Z[i]. In this paper we will see how the rational primes spilt in the ring of algebraic integers.

Key Words: Algebraic Number Field, Integral Basis, Discriminant & Ramify

#### 1. Introduction:

An Algebraic number field is a subfield of C (field of complex numbers) of the form  $Q(\alpha_1,\alpha_2,....\alpha_n)$ , where  $\alpha_1,\alpha_2,....\alpha_n$  are algebraic numbers. Let K be an algebraic number field. A basis for  $O_K$  is called an integral basis for K. Let  $\{\alpha_1,\alpha_2,....\alpha_n\}$  be an integral basis for K. Then  $D(\alpha_1,\alpha_2,....\alpha_n)$  is called the discriminant of K and is denoted by d(K) or  $d_K$ . Moreover, in any algebraic number field K, every proper integral ideal of  $O_K$  can be expressed uniquely up to order as a product of prime ideals. Let p be a rational prime. Suppose  $P_1^{e_1}P_2^{e_2}\dots P_g^{e_g}$ , where  $P_1,P_2\dots P_g$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  as  $P_K$  as  $P_K$  as  $P_K$  and  $P_K$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  and  $P_K$  are  $P_K$  as  $P_K$  and  $P_K$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  and  $P_K$  are  $P_K$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are distnict prime ideals of  $P_K$  lying above p where,  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  are  $P_K$  and  $P_K$  are  $P_K$  are  $P_K$  a

#### **Definition 1.1: (Basis of an Ideal)**

Let K be an algebraic number field of degree n. Let I be a nonzero ideal of  $O_K$ . If  $\{\alpha_1,\alpha_2,....\alpha_n\}$  is a set of elements of I such that every element  $\beta \in I$  can be expressed uniquely in the form as  $\beta = x_1\alpha_1 + x_2\alpha_2 ..... + x_n\alpha_n$  where  $x_1,x_2,....,x_n \in Z$  then  $\{\alpha_1,\alpha_2,....\alpha_n\}$  is called a basis for the ideal I.

## Definition 1.2: (Discriminant of n Elements in an Algebraic Number Field of Degree n)

Let K be an algebraic number field of degree n. Let  $\alpha_1, \alpha_2, \ldots, \alpha_n$  be n elements of the field K. Let  $\sigma_k$ ;  $1 \le k \le n$  denote the n distnict monomorphisms from K to C. For  $i = 1, 2, \ldots, n$  let  $\alpha_i^{(1)} = \sigma_1(\alpha_i) = \alpha_i$ ,  $\alpha_i^{(2)} = \sigma_2(\alpha_i), \ldots, \alpha_i^{(n)} = \sigma_n(\alpha_i)$  denote the conjugate of  $\alpha_i$  relative to K. Then the discriminant of  $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$  is

$$D(\alpha_1, \alpha_2, \dots, \alpha_n) = \begin{pmatrix} det \begin{bmatrix} \alpha_1^{(1)} & \cdots & \alpha_n^{(1)} \\ \vdots & \ddots & \vdots \\ \alpha_1^{(n)} & \cdots & \alpha_n^{(n)} \end{bmatrix} \end{pmatrix}^2$$

## **Definition 1.3: (Discriminant of an Ideal)**

Let K be an algebraic number field of degree n. Let I be an nonzero ideal of  $O_K$ . Let  $\{\alpha_1,\alpha_2,....\alpha_n\}$  be a basis of I. Then the discriminant D(I) of the ideal I is the nonzero integer given by  $D(I) = D(\alpha_1,\alpha_2,....\alpha_n)$ . **Definition 1.4:** (Index of  $\theta$ )

Let K be an algebraic number field of degree n. Let  $\theta \in K$  be such that  $K = Q(\theta)$ . Then the index of  $\theta$ , denoted by  $\operatorname{ind}(\theta)$  is the positive integer given by  $D(\theta) = D(1, \theta, \theta^2, ..., \theta^n) = (\operatorname{ind}(\theta))^2 d(K)$ .

Note that if  $D(\theta)$  is square free then  $ind(\theta) = 1$  and  $D(\theta) = d(K)$ . Thus  $\{1, \theta, \theta^2, ..., \theta^n\}$  is an integral basis for K. **2. Main Section:** 

Let  $\theta$  be a root of  $x^4 + x + 1 = 0$ . Let  $f(x) = x^4 + x + 1$ , is monic and irreducible over Z. [K:Q] = 4.

## Theorem 2.1:

Let a , b be integers such that  $x^4 + ax + b$  is irreducible over Z. Let  $\theta$  be a root of  $x^4 + ax + b$  so that  $K = Q(\theta)$  is a quartic field and  $\theta \in O_K$ . Then,  $D(\theta) = -27a^4 + 256b^3$ 

As a = b = 1. Thus,  $D(\theta) = -27 + 256 = 229$ . Since  $D(\theta)$  is square free. Therefore,  $d_K = D(\theta)$ .

Hence  $\{1, \theta, \theta^2, \theta^3\}$  is an integral basis of K.

## Theorem 2.2:

Let K be an algebraic number field with [K:Q] = n. Let p be a rational prime. Suppose <p> factors in  $O_K$  as <p $>= <math>P_1^{e_1}P_2^{e_2} \dots \dots P_g^{e_g}$ , where  $P_1, P_2 \dots \dots P_g$  are distnict prime ideals of  $O_K$ . Suppose that  $f_i$  is the inertial degree of  $P_i$  in K. Then,  $e_1f_1 + e_2f_2 \dots \dots + e_gf_g = n$ 

Note that  $g \le n$ 

In present case,  $g \le 4$ 

```
If g = 4:e_1 f_1 + e_2 f_2 + e_3 f_3 + e_4 f_4 = 4
i.e e_1 = f_1 = e_2 = f_2 = e_3 = f_3 = e_4 = f_4 = 1
Thus, \langle p \rangle = P_1 P_2 P_3 P_4; N(P_i) = p
If g = 3 : e_1 f_1 + e_2 f_2 + e_3 f_3 = 4
Wlog, assume that e_1 f_1 = 2 and e_2 f_2 = e_3 f_3 = 1
(e_1, f_1) = (1,2), (2,1) and e_2 = f_2 = e_3 = f_3 = 1
Thus, \langle p \rangle = P_1 P_2 P_3; N(P_1) = p^2, N(P_2) = N(P_3) = p
 = P_1^2 P_2 P_3; N(P_1) = N(P_2) = N(P_3) = p
If g = 2 : e_1 f_1 + e_2 f_2 = 4
(e_1, f_1) = (1, 2), (2,1) and (e_2, f_2) = (1,2), (2,1)
Thus, \langle p \rangle = P_1 P_2; N(P_1) = p^2 = N(P_2)
 = P_1^2 P_2; N(P_1) = p, N(P_2) = p^2
\langle p \rangle = P_1 P_2^2 ; N(P_2) = p , N(P_1) = p^2
 = P_1^2 P_2^2; N(P_1) = N(P_2) = p
Wlog, assume that (e_1, f_1) = 3 and (e_2, f_2) = 1
(e_1, f_1) = (1, 3), (3,1) and e_2 = f_2 = 1
Thus, \langle p \rangle = P_1 P_2; N(P_1) = p^3, N(P_2) = p
\langle p \rangle = P_1^3 P_2 ; N(P_1) = N(P_2) = p
If g = 1:e_1f_1 = 4
(e_1, f_1) = (1, 4), (4,1)
Thus, \langle p \rangle = P_1; N(P_1) = p^4
= P_1^4 ; N(P_1) = p
Let us see how rational primes spilt in O<sub>K</sub>
```

#### Theorem 2.3:

Let  $K = Q(\theta)$  be an algebraic number field of degree n such that  $O_K = Z[\theta]$ . Let p be a rational prime, let  $f(x) = irr_Q\theta \in Z[x]$ . Let -denote the natural map :  $Z[x] \rightarrow Z_p[x]$  where  $Z_p = Z/pZ$ . Let  $\bar{f}(x) = g_1^{e_1}(x) \ g_2^{e_2}(x) \dots$   $g_r^{e_r}(x)$  where  $g_i(x)$  are distnictmonic irreducibles in  $Z_p[x]$ ,  $1 \le i \le r$  and  $e_1$ ,  $e_2$ ,...., $e_r$  are positive integers. For  $i = 1, 2, \ldots, r$ , let  $f_i(x)$  be any monic polynomial of Z[x] such that  $\bar{f_i} = g_i$ . Set  $P_i = \langle p, f_i(\theta) \rangle$ ;  $i = 1, 2, \ldots, r$ . Then  $P_1$ ,  $P_2$ , ....,  $P_r$  are distnict prime ideals of  $O_K$  with  $P_1 = P_1^{e_1} P_2^{e_2} P_2^{e_1} P_2^{e_2} P_2^{e_2} P_2^{e_1} P_2^{e_2} P_2^{e_2} P_2^{e_1} P_2^{e_2} P_2^{e_2} P_2^{e_2} P_2^{e_1} P_2^{e_2} P$ 

For p = 2, Since  $x^{4} + x + 1$  is irreducible over  $\mathbb{Z}_{2}$ .

Set 
$$P = \langle 2, \theta^4 + \theta + 1 \rangle$$
 but  $\theta^4 + \theta + 1 = 0$ 

Thus  $P = \langle 2 \rangle$ ; N(P) = 16 and 2 will remain as prime in  $O_K$ 

For p = 3,  $x^4 + x + 1 = (x - 1)(x^3 + x^2 + x + 2)$  over  $Z_3[x]$  and  $x^3 + x^2 + x + 2$  is irreducible over  $Z_3$ 

Set  $P_1 = \langle 3, \theta - 1 \rangle$ ;  $N(P_1) = 3$ 

Set  $P_2 = \langle 3, \theta^3 + \theta^2 + \theta + 2 \rangle$ ;  $N(P_2) = 27$ 

Thus,  $<3> = P_1 P_2$ 

For p = 5,  $x^4 + x + 1 = (x - 3)(x^3 + 3x^2 + 4x + 3)$  over  $Z_5[x]$  and  $x^3 + 3x^2 + 4x + 3$  is irreducible over  $Z_5[x]$ 

Set  $P_1 = \langle 5, \theta - 3 \rangle$ ;  $N(P_1) = 5$ 

Set  $P_2 = \langle 5, \theta^3 + 3 \theta^2 + 4 \theta + 3 \rangle$ ;  $N(P_2) = 125$ 

Thus  $<5> = P_1 P_2$ 

## Theorem 2.4:

Let K be an algebraic number field. Then the rational prime ramifies in K iff p divides  $d_K$ 

As  $d_K = 229$  which is a rational prime i.e p = 229 ramifies in  $O_K$ 

For p = 229,  $x^4 + x + 1 = (x - 75)^2 (x^2 + 150x + 158)$  over  $Z_{229}[x]$  and  $x^2 + 150x + 158$  is irreducible over  $Z_{229}$ 

Set  $P_1 = \langle 229, \theta - 75 \rangle$ ;  $N(P_1) = 229$ 

Set  $P_2 = \langle 229, \theta^2 + 150 \theta + \overline{158} \rangle$ ;  $N(P_2) = (229)^2$ 

Thus  $\langle 229 \rangle = P_1^2 P_2$ 

## 3. References:

1. Saban Alaca and Kenneth S. Williams, Introductory Algebraic Number Theory, Cambridge University Press.